Skip to main content
Log in

Sub-wavelength image stitching with removable microsphere-embedded thin film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Imaging by dielectric microspheres embedded in thin film is a simple technique to achieve optical super-resolution. However, the film-thickness effect has not caused enough attention, and its field of view (FOV) is very limited. We first introduce a method to fabricate barium titanate glass (BTG) microsphere-embedded ultrathin polydimethylsiloxane (PDMS) films, and study their sub-wavelength imaging properties as a function of the film thickness. Our experimental results reveal that for an individual microsphere, its FOV obviously increases as the film thickness decreases, while the corresponding magnification changes barely. When the PDMS film thickness is 5–10 μm, the FOV of a microsphere is the largest, and the images produced by the neighboring close-packed microspheres with the same size can be stitched together to form a large image, realizing effective view expansion. Our results will boost the practical capacity of BTG microsphere-embedded film for sub-wavelength imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, Nat. Commun. 2, 218 (2011)

    Article  ADS  Google Scholar 

  2. S. Lee, L. Li, Z. Wang, W. Guo, Y. Yan, T. Wang, Appl. Optics 52, 7265–7270 (2013)

    Article  ADS  Google Scholar 

  3. J.Y. Lee, B.H. Hong, W.Y. Kim, S.K. Min, Y. Kim, M.V. Jouravlev, R. Bose, K.S. Kim, I.-C. Hwang, L.J. Kaufman, C.W. Wong, P. Kim, K.S. Kim, Nature 460, 498 (2009)

    Article  ADS  Google Scholar 

  4. A. Darafsheh, N.I. Limberopoulos, J.S. Derov, D.E. Walker Jr, V.N. Astratov, Appl. Phys. Lett. 104, 061117 (2014)

    Article  ADS  Google Scholar 

  5. R. Ye, Y. Ye, H.F. Ma, L. Cao, J. Ma, F. Wyrowski, R. Shi, J. Zhang, Sci. Reports 4, 3769 (2014)

    ADS  Google Scholar 

  6. X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li, Appl. Phys. Lett. 99, 203102 (2011)

    Article  ADS  Google Scholar 

  7. A. Darafsheh, G.F. Walsh, L. Dal Negro, V.N. Astratov, Appl. Phys. Lett. 101, 141128 (2012)

    Article  ADS  Google Scholar 

  8. A. Darafsheh, M. A. Fiddy, V. N. Astratov, in IEEE Proceedings of the 14th International Conference on Transparent Optical Networks-ICTON’12, Coventry, England, 2–5 July 2012 (IEEE, 2012), Paper No. Tu. A6.5. doi: 10.1109/ICTON.2012.6254502

  9. A. Darafsheh, C. Guardiola, D. Nihalani, D. Lee, J.C. Finlay, A. Carabe, in Conference on Nanoscale Imaging, Sensing, and Actuation for Biomedical Application XII, San Francisco, America, 09–12 February, 9337, 933705 (2015)

  10. A. Darafsheh, C. Guardiola, A. Palovcak, J.C. Finlay, A. Cárabe, Opt. Lett. 40, 5–8 (2015)

    Article  ADS  Google Scholar 

  11. K.W. Allen, Waveguide, Photodetector, and Imaging Applications of Microspherical Photonics, Ph. D. Dissertation (University of North Carolina at Charlotte, 2014), Chapter 4: Super-Resolution Imaging Through Arrays of High-Index Spheres Embedded in Transparent Matrices, pp. 98–122

  12. V. N. Astratov, A. Darafsheh, Methods and Systems for Super-resolution Optical Imaging Using High-index of Refraction Microspheres And Microcylinders, U. S. Patent application 14/042,834 (2012)

  13. Z. Wang, Improvements in and Relating to Lenses, PCT/GB2014/052578 (2014)

  14. L.A. Krivitsky, J.J. Wang, Z. Wang, B. Luk’yanchuk, Sci. Reports 3, 3501 (2013)

    ADS  Google Scholar 

  15. K.W. Allen, N. Farahi, Y. Li, N.I. Limberopoulos, D.E. Walker Jr., A.M. Urbas, V.N. Astratov, Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices. in IEEE Proceedings of Aerospace and Electronics Conference (NAECON), Dayton, June 24–27 (2014) http://arxiv.org/abs/1412.1873

  16. S.-y. Wang, H.-j. Zhang, D.-x. Zhang, Acta Phys. Sin. 62, 034207 (2013). (in Chinese) [王淑莹, 章海军, 张冬仙, 物理学报62, 034207 (2013).]

  17. V.V. Yakovlev, B. Luk’yanchuk, Laser Phys. 14, 1065–1071 (2004)

    Google Scholar 

  18. E. Mcleod, C.B. Arnold, Nat. Nanotechnol. 3, 413–417 (2008)

    Article  Google Scholar 

  19. X. Hao, C. Kuang, Y. Li, X. Liu, Y. Ku, Y. Jiang, Opt. Commun. 285, 4130–4133 (2012)

    Article  ADS  Google Scholar 

  20. Y. Ben-Aryeh, Appl. Phys. B-laser O 109, 165–170 (2012)

    Article  ADS  Google Scholar 

  21. L. Li, W. Guo, Y. Yan, S. Lee, T. Wang, Light Sci. Appl. 2, e104 (2013)

    Article  Google Scholar 

  22. R. Ye, Y. Ye, Z. Zhou, H. Xu, Langmuir 29, 1796–1801 (2013)

    Article  Google Scholar 

  23. S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, W. Guo, J. Optics 15, 125710 (2013)

    Article  ADS  Google Scholar 

  24. S. Lee, L. Li, Opt. Commun. 334, 253–257 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hong Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, B., Ye, YH., Hou, J. et al. Sub-wavelength image stitching with removable microsphere-embedded thin film. Appl. Phys. A 122, 15 (2016). https://doi.org/10.1007/s00339-015-9528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9528-y

Keywords

Navigation