Skip to main content
Log in

Effect of dopants ionic radii on dielectric properties of Bi4V2−x ME x O11−δ (where x = 0.0 and 0.15; ME = Mg, Ca, Sr and Ba)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Different alkaline earth metals doped Bi4V2−x ME x O11−δ (where x = 0.0 and 0.15; ME = Mg, Ca, Sr and Ba) samples are synthesized by melt quench technique followed by heat treatment. The γ-phase is stabilized at room temperature in all the doped samples, whereas undoped sample (x = 0.0) exhibits the α-phase at room temperature. These samples are investigated for their dielectric properties with respect to temperature and frequencies. From the scanning electron micrographs, it is clear that liquid-phase sintering has taken place in all the doped samples. The highest dielectric constant is observed in Bi4V1.85Ca0.15O11−δ sample ~105. The minimum loss is observed in Bi4V1.85Ba0.15O11−δ sample, i.e., ~2.58. The highest optical band gap ~2.42 eV is observed for Bi4V1.85Ca0.15O11−δ sample. The obtained results are discussed in the light of ionic radii, oxygen vacancies and disordering in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.M. Garner, G. Kloster, G. Atwood, L. Mosleys, Palanduz, Microelectron. Reliab. 45, 919 (2005)

    Article  Google Scholar 

  2. Z. Wang, L.L. Zhang, Y.P. Pu, J. Alloys Compds. 586, 420 (2014)

    Article  Google Scholar 

  3. M. Joseph, H.Y. Lee, H. Tabata, T. Kawai, J. Appl. Phys. 88(2), 1193 (2000)

    Article  ADS  Google Scholar 

  4. G. Singla, K. Singh, Ceram. Int. 39, 1785 (2013)

    Article  Google Scholar 

  5. V. Raghvan, Materials Science and Engineering (PHI Learning Private Limited, New Delhi, 2010)

    Google Scholar 

  6. Y. Bian, J. Zhai, J. Phys. Chem. Solids 75, 759 (2014)

    Article  Google Scholar 

  7. G. Bersuker, P. Zeitzoff, G. Brown, H.R. Huff, Mater. Today 7(1), 26 (2004)

    Article  Google Scholar 

  8. K. Shantha, K.B.R. Varma, Mater. Sci. Eng. B 56, 66 (1999)

    Article  Google Scholar 

  9. S.K. Ramasesha, A.K. Singh, K.B.R. Varma, Mater. Chem. Phys. 48, 136 (1997)

    Article  Google Scholar 

  10. N. Kumari, K.B.R. Varma, S.B. Krupanidhi, Mater. Sci. Eng. B 153, 36 (2008)

    Article  Google Scholar 

  11. I. Abrahams, A.J. Bush, F. Krok, G.E. Hawkes, K.D. Sales, P. Thorton, W. Bogusz, J. Mater. Chem. 8(5), 1213 (1998)

    Article  Google Scholar 

  12. I. Abrahams, F. Krok, J.A.G. Nelstrop, Solid State Ion. 90, 57 (1996)

    Article  Google Scholar 

  13. R.N. Vannier, E. Pernot, M. Anne, O. Isnard, G. Nowogrocki, G. Mairesse, Solid State Ion. 157, 147 (2003)

    Article  Google Scholar 

  14. F. Krok, I. Abrahams, M. Malys, W. Bogusz, J.R. Dygas, J.A.G. Nelstrop, A.J. Bush, Solid State Ion. 136–137, 119 (2000)

    Article  Google Scholar 

  15. S. Beg, S. Hafeez, N.A.S. Al-Areqi, Phys. B 405, 4370 (2010)

    Article  ADS  Google Scholar 

  16. M.C. Steil, F. Ratajczak, E. Capoen, C. Pirovano, R.N. Vannier, G. Mairesse, Solid State Ion. 176, 2305 (2005)

    Article  Google Scholar 

  17. K. Ravi, K. Singh, O.P. Pandey, Ionics 15, 567 (2009)

    Article  Google Scholar 

  18. M. Roy, S. Sahu, J. Integr. Sci. Technol. 2(2), 49 (2014)

    Google Scholar 

  19. S. Beg, A. Al-Alas, N.A.S. Al-Areqi, Mater. Chem. Phys. 124, 305 (2010)

    Article  Google Scholar 

  20. F. Krok, I. Abrahams, M. Malys, W. Bogusz, J.R. Dygas, J.A.G. Nelstrop, A.J. Bush, Solid State Ion. 136–137, 119 (2000)

    Article  Google Scholar 

  21. F.P.I. Paulin, M.R. Morelli, S.C. Maestrelli, Mat. Res. Innovat. 3, 292 (2000)

    Article  Google Scholar 

  22. S. Beg, A. Al-Alas, N.A.S. Al-Areqi, J. Phys. Chem. Solids 71, 1427 (2010)

    Article  ADS  Google Scholar 

  23. S. Beg, S. Hafeez, N.A.S. Al-Areqi, Phase Trans. 83(3), 169 (2010)

    Article  Google Scholar 

  24. S. Gupta, K. Singh, Ceram. Int. 41(8), 9496 (2015)

    Article  Google Scholar 

  25. F. Snchez-bajo, F.L. Cumbrera, J. Appl. Cryst. 30, 427 (1997)

    Article  Google Scholar 

  26. E.V. Velichko, Z.A. Mikhailovskay, M.V. Morozov, E.S. Buyanova, Y.V. Emel’yanova, S.A. Petrova, V.M. Zhukovskii, Russ. J. Electrochem. 47(5), 563 (2011)

    Article  Google Scholar 

  27. S. Gupta, K. Singh, Phys. B 431, 89 (2013)

    Article  ADS  Google Scholar 

  28. E.D. Politova, E.A. Fortalnova, G.M. Kaleva, A.V. Mosunov, M.G. Safronenko, N.U. Venskovskii, Solid State Ion. 192, 248 (2011)

    Article  Google Scholar 

  29. R.D. Shannon, Acta Cryst. A32, 751 (1976)

    Article  Google Scholar 

  30. T. Badapanda, V. Senthil, S.K. Rout, L.S. Cavalcante, A.Z. Simoes, T.P. Sinha, S. Panigrahi, M.M. de Jesus, E. Longo, J.A. Varela, Curr. Appl. Phy. 11, 1282 (2011)

    Article  ADS  Google Scholar 

  31. B.C. Sutar, R.N.P. Choudhary, P.R. Das, J. Electron. Mater. 43(7), 2621 (2014)

    Article  ADS  Google Scholar 

  32. S. Thakur, O.P. Pandey, K. Singh, Ceram. Int. 39, 6165 (2013)

    Article  Google Scholar 

  33. S. Yilmaz, O. Turkoglu, M. Ari, I. Belenli, Ceramica 57, 185 (2011)

    Google Scholar 

  34. Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, G. Cao, J. Appl. Phys. 89(10), 5647 (2001)

    Article  ADS  Google Scholar 

  35. G.H. Cartledge, J. Am. Chem. Soc. 50, 2855 (1928)

    Google Scholar 

  36. K. Shantha, K.B.R. Varma, J. Mater. Chem. 7(8), 1565 (1997)

    Article  Google Scholar 

  37. X. Mao, H. Suna, W. Wang, Y. Lub, X. Solid State Commun. 152, 483 (2012)

    Article  ADS  Google Scholar 

  38. P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 91(20), 207601 (2003)

    Article  ADS  Google Scholar 

  39. J.P. Tiwari, K. Shahi, Philos. Mag. 87(29), 4475 (2007)

    Article  ADS  Google Scholar 

  40. B. Tirloni, E.S. Lang, G.M. de Olivira, Polyhedron 62, 126 (2013)

    Article  Google Scholar 

  41. V. Kumar, A. Sharma, D.K. Sharma, D.K. Dwivedi, Optik 125, 1209 (2014)

    Article  ADS  Google Scholar 

  42. R.K. Waring Jr, W.Y. Hsu, J. Appl. Phys. 54, 4093 (1983)

    Article  ADS  Google Scholar 

  43. A.F. Qasrawi, A. Mergen, Phys. B 440, 48 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. B. N. Chudasama and Ms. Samita Thakur, Thapar University for their help in recording the UV/vis spectra and valuable and consistent guidance. Authors are also thankful to DST for financial help under sanction Order No. SR/S2/CMP-0035/2011 dated 19.01.2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Singh, K. Effect of dopants ionic radii on dielectric properties of Bi4V2−x ME x O11−δ (where x = 0.0 and 0.15; ME = Mg, Ca, Sr and Ba). Appl. Phys. A 121, 1251–1259 (2015). https://doi.org/10.1007/s00339-015-9498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9498-0

Keywords

Navigation