Skip to main content

Advertisement

Log in

Photogeneration process in bulk heterojunction solar cell based on quaterthiophene and CdS nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the blended systems composed of organic oligothiophenes and CdS nanoparticles were investigated through their optical and photoelectrical measurements for their potential applications in photovoltaic devices. The electrical and photoelectrical properties of the devices fabricated with the active layer sandwiched between the metal anode and the metal cathode have been reported. Dependence of the performance of this bulk heterojunction photovoltaic device on their composition has been investigated with respect to charge transport. The organic/inorganic interface area in bulk heterojunction is an important factor in the photovoltaic process. The incorporation of nanoparticles in the polymer matrix, for the purpose to fabricate hybrid inorganic–organic materials, could be a good alternative to enhance the charge generation process of free carriers. The JV curves of the quaterthiophene (4T) and hybrid quaterthiophene/cadmium sulfide nanoparticles CdS show the important role played by the nanoparticles for energy conversion improvement. The experimental data were found to be in good agreement with a modified Braun–Onsager model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Toccoli, M. Tonezzer, P. Bettotti, N. Coppedè, S. Larcheri, A. Pallaoro, L. Pavesi, S. Iannotta, Org. Electron. 10, 521–526 (2009)

    Article  Google Scholar 

  2. K. Takimiya, Y. Kunugi, T. Otsubo, Chem. Lett. 36, 578 (2007)

    Article  Google Scholar 

  3. M.A. Saidani, A. Benfredj, S. Romdhane, F. Kouki, H. Bouchriha, Phys. Rev. B 86, 165315 (2012)

    Article  ADS  Google Scholar 

  4. B.R. Saunders, M.L. Turner, Adv. Colloid Interface Sci. 138, 1–23 (2008)

    Article  Google Scholar 

  5. C. Barone, G. Landi, A. DeSio, H.C. Neitzert, S. Pagano, Sol. Energy Mater. Sol. Cells 122, 40–45 (2014)

    Article  Google Scholar 

  6. C. Reanprayoon, J. Gasiorowski, M. Sukwattanasinitt, N.S. Sariciftci, P. Thamyongkit, RSC Adv. 4, 3045–3050 (2014)

    Article  Google Scholar 

  7. V.I. Boev, A. Soloviev, C.J.R. Silva, M.J.M. Gomes, Solid State Sci. 8, 50–58 (2006)

    Article  ADS  Google Scholar 

  8. Y. Zhou, F.S. Riehle, Y. Yuan, H.-F. Schleiermacher, M. Niggemann, G.A. Urban, M. Krüger, App. Phy. Lett. 96, 013304 (2010)

    Article  ADS  Google Scholar 

  9. D. Yun, W. Feng, H. Wu, K. Yoshino, Sol. Energy Mater. Sol. Cells 93, 1208–1213 (2009)

    Article  Google Scholar 

  10. S. Jaziri, S. Romdhane, H. Bouchriha, R. Bennaceur, Phys. Lett. A 234, 141–146 (1997)

    Article  ADS  Google Scholar 

  11. J. Yang, A. Tang, R. Zhou, J. Xue, Sol. Energy Mater. Sol. Cells 95, 476–482 (2011)

    Article  Google Scholar 

  12. S. Shiojiri, T. Hirai, I. Komasawa, J. Chem. Eng. Jap. 30, 86 (1997)

    Article  Google Scholar 

  13. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Prog. Polym. Sci. 38, 1232–1261 (2013)

    Article  Google Scholar 

  14. N. Mastour, Z.B. Hamed, A. Benchaabane, M.A. Sanhoury, F. Kouki, Org. Electron. 14, 2093–2100 (2013)

    Article  Google Scholar 

  15. A. Agostiano, M. Catalano, M.L. Curri, M. Della Monica, L. Manna, L. Vasanelli, Micron 31, 253–258 (2000)

    Article  Google Scholar 

  16. N.B.H. Mohamed, M. Haouari, N. Jaballah, A. Bchetnia, K. Hriz, M. Majdoub, H.B. Ouada, Phys. B Condens. Matter 407, 3849–3855 (2012)

    Article  ADS  Google Scholar 

  17. S. Shiojiri, T. Hirai, I. Komasawa, J. Chem. Eng. Jpn. 30, 86 (1997)

    Article  Google Scholar 

  18. M. Curri, A. Agostiano, L. Manna, M.D. Monica, M. Catalano, L. Chiavarone, V. Spagnolo, M. Lugara, J. Phys. Chem. B. 104, 8391 (2000)

    Article  Google Scholar 

  19. W.W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 15, 2854–2860 (2003)

    Article  Google Scholar 

  20. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Panday, J Electron. Mater. Lett. 7, 31 (2011)

    Article  ADS  Google Scholar 

  21. N. Pinna, K. Weiss, J. Urban, M. Pileni, Adv. Mater. 13, 261 (2001)

    Article  Google Scholar 

  22. L. Wang, Y.S. Liu, X. Jiang, D.H. Qin, Y. Cao, J. Phys. Chem. C 111, 9538 (2007)

    Article  Google Scholar 

  23. J.P. de Carvalho Alves, J.N. de Freitas, T.D.Z. Atvars, A. Flávia Nogueira, Synth. Met. 164, 69 (2013)

    Article  Google Scholar 

  24. X. Jiang, F. Chen, W. Qiu, Q. Yan, Y. Nan, H. Xu, L. Yang, H. Chen, Sol. Energy Mater. Sol. Cells 94, 2223 (2010)

    Article  Google Scholar 

  25. Z.B. Hamed, A. Benchaabane, F. Kouki, M.A. Sanhoury, H. Bouchriha, Synth. Met. 195, 102–109 (2014)

    Article  Google Scholar 

  26. M.A. Saidani, A. Benfredj, F. Kouki, S. Romdhane, J.L. Fave, H. Bouchriha, Synth. Met. 162, 1746–1749 (2012)

    Article  Google Scholar 

  27. N.C. Greenham, X. Peng, A.P. Alivisatos, Phys. Rev. B 54(24), 17628 (1996)

    Article  ADS  Google Scholar 

  28. Q. Gul, M. Zakria, T.M. Khan, A. Mahmood, A. Iqbal, Mater. Sci. Semicond. Process. 19, 17–23 (2014)

    Article  Google Scholar 

  29. D. Fichou, G. Horowitz, B. Xu, F. Gamier, Synth. Met. 48, 167–179 (1992)

    Article  Google Scholar 

  30. Y. Liu, L.Y. Wang, Y. Cao, Front. Chem. Chin. 2, 383 (2007)

    Article  Google Scholar 

  31. D. Deng, M. Shi, F. Chen, L. Chen, X. Jiang, H. Chen, Sol. Energy 84, 771–776 (2010)

    Article  ADS  Google Scholar 

  32. C. Greeham, X. Peng, A.P. Alivisatos, Phys. Rev. B 54, 17628–17637 (1996)

    Article  ADS  Google Scholar 

  33. S.N. Sharm, T. Vats, N. Dhenadhayalan, P. Ramamurthy, A.K. Narula, Sol. Energy Mater. Sol. Cells 100, 6–15 (2012)

    Article  Google Scholar 

  34. F. Schauer, Sol. Energy Mater. Sol. Cells 87, 235–250 (2005)

    Article  Google Scholar 

  35. L. Wang, Y.S. Liu, X. Jiang, D.H. Qin, Y. Cao, J. Phys. Chem. C 111, 9538 (2007)

    Article  Google Scholar 

  36. J. Rostalski, D. Meissner, Sol. Energy Mater. Sol. Cells 63, 37 (2000)

    Article  Google Scholar 

  37. D. Gupta, M. Bag, K.S. Narayan, Appl. Phys. Lett. 92, 093301 (2008)

    Article  ADS  Google Scholar 

  38. A. Kumar, S. Sista, Y. Yang, J. Appl. Phys. 105, 094512 (2009)

    Article  ADS  Google Scholar 

  39. F. Kouki, G. Horowitz, F. Garnier, H. Bouchriha, Org. Electron. 11, 1439–1444 (2010)

    Article  Google Scholar 

  40. V.D. Mihailetchi, L.J.A. Koster, J.C. Hummelen, P.W.M. Blom, Phys. Rev. Lett. 93, 6601 (2004)

    Article  Google Scholar 

  41. L. Onsager, Phys. Rev. 54, 554–557 (1938)

    Article  ADS  Google Scholar 

  42. C.L. Braun, J. Chem. Phys. 80, 4157 (1984)

    Article  ADS  Google Scholar 

  43. J.C. Scott, G.G. Malliaras, Chem. Phys. Lett. 299, 115–119 (1999)

    Article  ADS  Google Scholar 

  44. R. Sokel, R.C. Hughes, J. Appl. Phys. 53, 7414 (1982)

    Article  ADS  Google Scholar 

  45. D. Yun, W. Feng, H. Wu, K. Yoshino, Sol. Energy Mater. Sol. Cells 93, 1208–1213 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayçal Kouki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benchaabane, A., Hamed, Z.B., Kouki, F. et al. Photogeneration process in bulk heterojunction solar cell based on quaterthiophene and CdS nanoparticles. Appl. Phys. A 120, 1149–1157 (2015). https://doi.org/10.1007/s00339-015-9294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9294-x

Keywords

Navigation