Skip to main content

Advertisement

Log in

Enhanced electronic excitation energy transfer between dye molecules incorporated in nano-scale media with apparent fractal dimensionality

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present study, we analyze the efficiency of Electronic Excitation Energy Transfer (EEET) between two dyes, an energy donor (D) and acceptor (A), concentrated in structurally heterogeneous media (surfactant micelles, liposomes, and porous SiO2 matrices). In all three cases, highly effective EEET in pairs of dyes has been found and cannot be explained by Standard Förster-type theory for homogeneous solutions. Two independent approaches based on the analysis of either the D relative quantum yield (\( F_{\text{DA}} /F_{\text{D}} \)) or the D fluorescence decay have been used to study the deviation of experimental results from the theoretical description of EEET process. The observed deviation is quantified by the apparent fractal distribution of molecules parameter \( d \). We conclude that the highly effective EEET observed in the nano-scale media under study can be explained by both forced concentration of the hydrophobic dyes within nano-volumes and non-uniform cluster-like character of the distribution of D and A dye molecules within nano-volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Demchenko, Methods Appl. Fluoresc. 1, 022001 (2013)

    Article  Google Scholar 

  2. B. Hötzer, I.L. Medintz, N. Hildebrant, Small 8, 2297 (2012)

    Article  Google Scholar 

  3. S. Lui, Z. Tang, J. Mater. Chem. 20, 24 (2010)

    Article  Google Scholar 

  4. J.J. Gooding, Anal. Chim. Acta 559, 137 (2006)

    Article  Google Scholar 

  5. L. Wang, W. Tan, Nano Lett. 1, 84 (2006)

    Article  ADS  Google Scholar 

  6. V.M. Agranovich, M.D. Galainin, Electronic Excitation Energy Transfer in Condensed Matter (North-Holland Publishing Company, Amsterdam, 2008)

    Google Scholar 

  7. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edn. (Kluwer Academic, New York, 1999)

    Book  Google Scholar 

  8. U. Even, K. Rademann, J. Jortner, N. Manor, R. Reisfeld, Phys. Rev. Lett. 52, 2164 (1984)

    Article  ADS  Google Scholar 

  9. D.R. Singh, V. Raicu, Biophys. J. 98, 2127 (2010)

    Article  Google Scholar 

  10. T.V. Antropova, JuA Gordeeva, B.D. Rizhikov, A.M. Saletsky, J. Appl. Spectr. 72, 478 (2005)

    Article  ADS  Google Scholar 

  11. A.K. Dutta, Solid State Commun. 95, 159 (1995)

    Article  ADS  Google Scholar 

  12. J. Klafler, A. Blumen, G. Zumeofen, J. Lumin. 31–32, 627 (1984)

    Article  Google Scholar 

  13. A.Z. Baran, A.A. Ivantsov, V. Saletsky, F.V. Tkachev, J. Lumin. 76–77, 420 (1998)

    Article  Google Scholar 

  14. J.P.S. Farinha, J.M.G. Martinho, J. Phys. Chem. C 112, 10591 (2008)

    Article  Google Scholar 

  15. P. Levitz, J.M. Drake, J. Klafter, J. Chem. Phys. 89, 5224 (1988)

    ADS  Google Scholar 

  16. C.L. Yang, P. Evesque, M.A. El-Sayed, J. Phys. Chem. 89, 3442 (1985)

    Google Scholar 

  17. J. Klafter, A. Blumen, J. Chem. Phys. 80, 875 (1984)

    ADS  Google Scholar 

  18. M.N. Berberan-Santos, M.J.E. Prieto, A.G. Szabo, J. Chem. Soc. Faraday Trans. 88, 255 (1992)

    Article  Google Scholar 

  19. J. Klafter, A. Blumen, J. Lumin. 34, 77 (1985)

    Article  Google Scholar 

  20. K. Shinoda, T. Nakagawa, H. Tamamushi, T.I. Semura, Colloidal Surfactants, Some Physicochemical Properties (Academic Press, New York, 1963)

    Google Scholar 

  21. R.P. Hauglang, Handbook of Fluorescent Probes and Research Products (Molecular probes, New York, 2002)

    Google Scholar 

  22. B. Mui, L. Chow, M.J. Hope, Methods Enzymol. 367, 3 (2003)

    Article  Google Scholar 

  23. T.A. Blank, I.I. Ganina, YuV Malyukin, L.A. Eksperiandova, Funct. Mater. 16, 517 (2009)

    Google Scholar 

  24. M.N. Berberan-Santos, E.N. Bodunov, J.M.G. Martinho, Opt. Spectrosc. 81, 217 (1996)

    ADS  Google Scholar 

  25. A.I. Burshteĭn, Sov. Phys. Usp. 27, 579 (1984)

    Article  ADS  Google Scholar 

  26. E.N. Bodunov, Opt. Spektroskopiya 74, 518 (1993)

    Google Scholar 

  27. A.S. Lebed, S.L. Yefimova, A.V. Sorokin, I.A. Borovoy, YuV Malyukin, Funct. Mater. 18, 5 (2001)

    Google Scholar 

  28. S.L. Yefimova, A.S. Lebed, G.Y. Guralchuk, A.V. Sorokin, YuV Malyukin, Mol. Cryst. Liq. Cryst. 535, 204 (2011)

    Article  Google Scholar 

  29. S.L. Yefimova, T.N. Tkacheva, IYu. Kurilchenko, A.V. Sorokin, YuV Malyukin, J. Appl. Spectr. 79, 914 (2013)

    Article  ADS  Google Scholar 

  30. J.K. Thomas, E.H. Ellison, Adv. Colloid Interface Sci. 89–90, 195 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana L. Yefimova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yefimova, S.L., Rekalo, A.M., Gnap, B.A. et al. Enhanced electronic excitation energy transfer between dye molecules incorporated in nano-scale media with apparent fractal dimensionality. Appl. Phys. A 116, 2131–2138 (2014). https://doi.org/10.1007/s00339-014-8418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8418-z

Keywords

Navigation