Skip to main content
Log in

Fabrication of gas ionization sensor based on titanium oxide nanotube arrays

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Gas sensors have been fabricated based on field ionization from titanium oxide nanotubes grown on titanium foil. Ordered nanaotube arrays of titanium oxides were grown by the anodization method. We measured breakdown voltages and discharge currents of the device for various gases. Our gas ionization sensors (GIS) presented good sensitivity, selectivity, and short response time. The GISs based on TiO2 nanotube arrays showed lower breakdown voltage, higher discharge current, and good selectivity. An excellent response observed for Ar compared to other gases. Besides, by introducing 2 % CO and 4 % H2 to N2 flow gas, the amount of breakdown voltage shifts about 20 and 70 volts to the lower values, respectively. The GIS works at room temperature and has the ability of detect inert gases with high stability and good linearity. Besides, short response time of about 1 second for the GISs based on TiO2 nanotube arrays makes them excellent for gas sensing applications. Sharp edges of the nanotubes, through enhancing the applied electric field, reduce operating voltage to the reasonable values and power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Sayago, M.d.C. Horrillo, S. Baluk, M. Aleixandre, M.J. Fernandez, L. Ares, M. Garcia, J.P. Santos, J. Gutierrez, Detection of toxic gases by a tin oxide multi sensor. IEEE Sens. J. 2(5) (2002)

  2. L.M. Cukrov, P.G. McCormick, K. Galatsis, W. Wlodarski, Micro characterization and gas sensing properties of mechanochemically processed nanosized iron-doped SnO2 sensors. Proc. IEEE 1, 443–447 (2002)

    Google Scholar 

  3. A. Chowdhuri, V. Gupta, K. Sreenivas, Enhanced catalytic activity of ultra-thin CuO islands on SnO2 films for fast response H2S gas sensors. Sensors. Proc. IEEE 1, 430–434 (2002)

    Google Scholar 

  4. D.S. Lee, D.D. Lee, S.W. Ban, M. Lee, Y.T. Kim, SnO2 gas sensing array for combustible and explosive gas leakage recognition. IEEE Sens. J. 2(3) (2002)

  5. E. Kanazawa, G. Sakai, K. Shimanoe, Y. Kanmura, Y. Teraoka, N. Miura, N. Yamazoe, Metal oxide semiconductor N2O sensor for medical use. Sens. Actuators B 77, 72–77 (2001)

    Article  Google Scholar 

  6. J. Huang, J. Wang, C. Gu, K. Yu, F. Meng, J. Liu, A novel highly sensitive gas ionization sensor for ammonia detection. Sens. Actuators A 150, 218–223 (2009)

    Article  Google Scholar 

  7. Z. Hou, J. Wu, W. Zhou, X. Wei, D. Xu, Y. Zhang, B. Cai, A MEMS-based ionization gas sensor using carbon nanotubes. IEEE Trans. Electron Devices 54(6), 1545–1548 (2007)

    Article  ADS  Google Scholar 

  8. H.S. Sim, S.P. Lau, L.K. Ang, M. Tanemura, K. Yamaguchi, Multi-purpose ionization gas sensing devices using carbon nanofibers on plastic substrates. Diam. Relat. Mater. 17, 1959–1962 (2008)

    Article  ADS  Google Scholar 

  9. S. Kim, CNT sensors for detecting gases with low adsorption energy by ionization. Sensors 6, 503–513 (2006)

    Article  Google Scholar 

  10. X. Chen, Z. Guo, J. Huang, F. Meng, M. Zhang, J. Liu, Fabrication of gas ionization sensors using well-aligned MWCNT arrays grown in porous AAO templates. Colloids Surf. A, Physicochem. Eng. Asp. 313–314, 355–358 (2008)

    Article  Google Scholar 

  11. D.J. Riley, M. Mann, D.A. MacLaren, P.C. Dastoor, W. Allison, K.B.K. Teo, G.A.J. Amaratunga, W. Milne, Helium detection via field ionization from carbon nanotubes. Nano Lett. 3, 1455–1458 (2003)

    Article  ADS  Google Scholar 

  12. A. Nikfarjam, A. Iraji zad, F. Razi, S.Z. Mortazavi, Fabrication of gas ionization sensor using carbon nano tube arrays grown on porous silicon substrate. Sens. Actuators A 162, 24–28 (2010)

    Article  Google Scholar 

  13. F. Paschen, Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Ann. Phys. 273, 69–75 (1889)

    Article  Google Scholar 

  14. J. Townsend, Electricity in Gases (Oxford University Press, New York, 1915)

    Google Scholar 

  15. P. Carazzetti, H.R. Shea, Electrical breakdown at low pressure for planar micro electromechanical systems with 10 μm to 500 μm gaps. J. Micro Nanolithogr. MEMS MOEMS 8(3), 031305 (2009)

    Article  Google Scholar 

  16. S.J. Kim, Gas sensors based on Paschen’s law using carbon nanotubes as electron emitters. J. Phys. D: Appl. Phys. 39, 3026–3029 (2006)

    Article  ADS  Google Scholar 

  17. R.B. Sadeghian, M. Kahrizi, A novel gas sensor based on tunneling-field-ionization on whisker-covered gold nanowires. IEEE Sens. J. 8(2), 161–169 (2008)

    Article  Google Scholar 

  18. N. de Jonge, J.M. Bonard, Carbon nanotube electron sources and applications. Philos. Trans. R. Soc. Lond. A 362, 2239–2266 (2004)

    Article  ADS  Google Scholar 

  19. R. Mohammadpour, A. Iraji zad, A. Hagfeldt, G. Boschloo, Comparison of trap state distribution and carrier transport in nanotubular and nanoparticular TiO2 electrodes for dye sensitized solar cells. ChemPhysChem 11, 2140–2145 (2010)

    Article  Google Scholar 

  20. R. Mohammadpour, A. Iraji zad, A. Hagfeldt, G. Boschloo, Investigation on the dynamics of electron transport and recombination in TiO2 nanotube/nanoparticle composite electrodes for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 13, 21487–21491 (2011)

    Article  Google Scholar 

  21. D.C. Hurum, A.G. Agrios, K.A. Gray, Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545–4549 (2003)

    Article  Google Scholar 

  22. Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami, A. Fujishima, Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly. Langmuir 22, 10916–10919 (2007)

    Article  Google Scholar 

  23. L. Liao, H.B. Lu, M. Shuai, J.C. Li, Y.L. Liu, C. Liu, Z.X. Shen, T. Yu, A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability. Nanotechnology 19, 175501 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Iraji zad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikfarjam, A., Mohammadpour, R. & Iraji zad, A. Fabrication of gas ionization sensor based on titanium oxide nanotube arrays. Appl. Phys. A 115, 1387–1393 (2014). https://doi.org/10.1007/s00339-013-8017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8017-4

Keywords

Navigation