Skip to main content
Log in

The effect of chemical polishing on the interface structure and electrical property of Au/Cd0.9Zn0.1Te contact

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The interface structures between Au electrode and Cd0.9Zn0.1Te wafer with different surface treatments are studied by means of transmission electron microscopy. Before the preparation of the Au film, atomic force microscopy and scanning electron microscopy are employed to investigate the surface morphology and elemental concentration before and after the chemical polishing process. It is found that an amorphous layer with the thickness of approximately 5 nm exists at the interface area for the only mechanical polished samples. As the chemical polishing process goes on, the interfaces become flatter and smoother. A thinner lattice mismatch layer instead of the amorphous layer after the chemical polishing process is found between Au and Cd0.9Zn0.1Te. The formation mechanism for the amorphous layer is considered to be the large lattice mismatch between Au and matrix. Furthermore, current–voltage (IV) measurement is also carried out to investigate the relationship between the interface structure and electrical properties. The ohmic contact coefficient is calculated to increase from 0.4609 to 1.0904 after 4 min chemical polishing corresponding to the IV test. It is indicated that the charges become easier to move across the interface, which has no amorphous layer, due to the weaker blocking effect to the charges for the thinner and ordered interface region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Takahashi, S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001)

    Article  ADS  Google Scholar 

  2. C. Szeles, Phys. Status Solidi B 241, 783 (2004)

    Article  ADS  Google Scholar 

  3. L. Verger, J.P. Bonnefoy, F. Glasser, P. Ouvrier-Buffet, J. Electron. Mater. 26, 738 (1997)

    Article  ADS  Google Scholar 

  4. O. Limousin, Nucl. Instrum. Methods A 504, 24 (2003)

    Article  ADS  Google Scholar 

  5. M. Amman, J.S. Lee, P.N. Luke, H. Chen, S.A. Awadalla, R. Redden, G. Bindley, IEEE Trans. Nucl. Sci. 56, 795 (2009)

    Article  ADS  Google Scholar 

  6. S.A. Awadalla, J. Mackenzie, H. Chen, B. Redden, G. Bindley, M.C. Duff, A. Burger, M. Groza, V. Buliga, J.P. Bradley, Z.R. Dai, N. Teslich, D.R. Black, J. Cryst. Growth 312, 507 (2010)

    Article  ADS  Google Scholar 

  7. F. Lmai, N. Brihi, Z. Takkouk, K. Guergouri, F. Bouzerara, M. Hage-Ali, J. Appl. Phys. 103, 084504 (2008)

    Article  ADS  Google Scholar 

  8. M.C. Duff, D.B. Hunter, A. Burger, M. Groza, V. Buliga, J.P. Bradley, G. Graham, Z.R. Dai, N. Teslich, D.R. Black, A. Lanzirotti, J. Mater. Res. 24, 1361 (2009)

    Article  ADS  Google Scholar 

  9. H. Bensalaha, J.L. Plaza, J. Crocco, Q. Zheng, V. Carcelen, A. Bensouici, E. Dieguez, Appl. Surf. Sci. 257, 4633 (2011)

    Article  ADS  Google Scholar 

  10. M.C. Duff, D.B. Hunter, A. Burger, M. Groza, V. Buliga, D.R. Black, Appl. Surf. Sci. 254, 2889 (2008)

    Article  ADS  Google Scholar 

  11. V.A. Gnatyuk, T. Aoki, O.I. Vlasenko, S.N. Levytskyi, B.K. Dauletmuratov, C.P. Lambropoulos, Appl. Surf. Sci. 255, 9813 (2009)

    Article  ADS  Google Scholar 

  12. A. Bensouici, V. Carcelen, J.L. Plaza, S. De Dios, N. Vijayan, J. Crocco, H. Bensalah, E. Dieguez, M. Elaatmani, J. Cryst. Growth 312, 2098 (2010)

    Article  ADS  Google Scholar 

  13. F. Aqariden, S. Tari, K. Nissanka, J. Li, N. Kioussis, R.E. Pimpinella, M. Dobrowolska, J. Electron. Mater. 41, 2893 (2012)

    Article  ADS  Google Scholar 

  14. G.Q. Zha, W.Q. Jie, T.T. Tan, X.Q. Wang, Nucl. Instrum. Methods A 566, 495 (2006)

    Article  ADS  Google Scholar 

  15. Z.Y. Zhang, H. Gao, W.Q. Jie, D.M. Guo, R.K. Kang, Y. Li, Semicond. Sci. Technol. 23, 105023 (2008)

    Article  ADS  Google Scholar 

  16. X.Q. Wang, W.Q. Jie, Q. Li, Z. Gu, Mater. Sci. Semicond. Process. 8, 615 (2005)

    Article  Google Scholar 

  17. G.W. Wright, D.A. Chinn, B.A. Brunnett, M.J. Mescher, J.C. Lund, R.W. Olsen, F.P. Doty, T.E. Schlesinger, R.B. James, K. Chattopadhyay, R.C. Wingfield, A. Burger, Proc. SPIE 3768, 481 (1999)

    Article  ADS  Google Scholar 

  18. J.A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1999)

    Google Scholar 

  19. H. Lüth, Solid Surfaces, Interfaces and Thin Films (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  20. H.C. Montgomery, Solid-State Electron. 7, 147 (1964)

    Article  ADS  Google Scholar 

  21. Q. Li, W. Jie, L. Fu, X. Wang, X. Zhang, Appl. Surf. Sci. 253, 1190 (2006)

    Article  ADS  Google Scholar 

  22. P. Veeramania, M. Harisa, S. Moorthy Babua, D. Kanjilalb, P. Sugathanb, Radiat. Meas. 43, 56 (2008)

    Article  Google Scholar 

  23. X. Liang, J. Min, C. Wang, W. Sang, Y. Gu, Y. Zhao, C. Zhou, Rare Met. Mater. Eng. 38, 2085 (2009)

    Article  Google Scholar 

  24. X.Q. Wang, W.Q. Jie, H.Y. Li, Q. Li, Z.W. Wang, Nucl. Instrum. Methods A 560, 409 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility node (Sydney Microscopy and Microanalysis) at the University of Sydney. This work has been supported by the National Natural Science Foundation of China (Grant No. 51172185), the Foundation State Key Laboratory of Solidification Processing (Grant No. 78-QP-2011), the Doctorate Foundation of Northwestern Polytechnical University (No. CX201104), the Ministry of Education Fund for Doctoral Students Newcomer Awards of China, and the Fund of the Ministry of Education for Doctors (No. 20116102110013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Fu, L., Nie, Z. et al. The effect of chemical polishing on the interface structure and electrical property of Au/Cd0.9Zn0.1Te contact. Appl. Phys. A 115, 1309–1316 (2014). https://doi.org/10.1007/s00339-013-7989-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7989-4

Keywords

Navigation