Skip to main content
Log in

Characteristics of nano-plasmonic resonators with a gap structure

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The authors present a nano-plasmonic disk resonator with a gap structure using the multi-mode interference effect coupling. The coupling intensity of the multi-mode interference effect coupling is 1.5 times greater than that of the conventional side coupling. The multi-mode interference effect is adopted as the coupling between the input bus waveguide and the nano-plasmonic disk resonator. The thickness of the dielectric layer, the width of the bus waveguide, and the length of the coupling portion are designed by theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Holmgaard, Z. Chen, S.I. Bozhevolnyi, L. Markey, A. Dereux, Dielectric-loaded plasmonic waveguide-ring resonators. Opt. Express 17, 2968–2975 (2009)

    Article  ADS  Google Scholar 

  2. B. Min, E. Ostby, V. Sorger, E. U.–Avila, L. Yang, X. Zhang, K. Vahala, High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009)

    Article  ADS  Google Scholar 

  3. H. Okamoto, K. Yamaguchi, M. Haraguchi, T. Okamoto, Experimental demonstration of plasmonic racetrack resonators with a trench structure. Appl. Phys. B 108, 149–152 (2012)

    Article  ADS  Google Scholar 

  4. S. Randhawa, A.V. Krasavin, T. Holmgaard, J. Renger, S.I. Bozhevolnyi, A.V. Zayats, R. Quidant, Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths. Appl. Phys. Lett. 98, 161102 (2011)

    Article  Google Scholar 

  5. A. Hosseini, Y. Massoud, Nanoscale surface plasmon based resonator using rectangular geometry. Appl. Phys. Lett. 90, 181102 (2007)

    Article  ADS  Google Scholar 

  6. R. Ulrich, Image formation by phase coincidences in optical waveguides. Opt. Commun. 13, 259–264 (1975)

    Article  ADS  Google Scholar 

  7. L.B. Soldano, E.C.M. Pennings, Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Lightwave Technol. 13, 615–627 (1995)

    Article  ADS  Google Scholar 

  8. Q. Wang, G. Farrell, All-fiber multimode-interference-based refractometer sensor: Proposal and design. Opt. Lett. 31, 317–319 (2006)

    Article  ADS  Google Scholar 

  9. Y. Kou, X. Chen, Multimode interference demultiplexers and splitters in metal–insulator–metal waveguides. Opt. Express 19, 6042–6047 (2011)

    Article  ADS  Google Scholar 

  10. Y.-J. Tsai, A. Degiron, N.M. Jokerst, D.R. Smith, Plasmonic multi-mode interference couplers. Opt. Express 17, 17471–17482 (2009)

    Article  ADS  Google Scholar 

  11. A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010)

    Article  ADS  MATH  Google Scholar 

  12. H. Okamoto, S. Onishi, M. Kataoka, K. Yamaguchi, M. Haraguchi, T. Okamoto, Characteristics of double-plasmonic-racetrack resonator to increase quality factor. Opt. Rev. 20, 26–30 (2013)

    Article  Google Scholar 

  13. A. Yanai, U. Levy, Plasmonic focusing with a coaxial structure illuminated by radially polarized light. Opt. Express 17, 924–932 (2009)

    Article  ADS  Google Scholar 

  14. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  15. S.I. Bozhevolnyi, J. Jung, Scaling for gap plasmon based waveguides. Opt. Express 16, 2676–2684 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was carried out using the equipment provided by the Cybermedia Center of the Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Okamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, H., Yamaguchi, K., Haraguchi, M. et al. Characteristics of nano-plasmonic resonators with a gap structure. Appl. Phys. A 115, 19–23 (2014). https://doi.org/10.1007/s00339-013-7955-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7955-1

Keywords

Navigation