Skip to main content
Log in

Nanoindentation study of Cu52Zr37Ti8In3 bulk metallic glass

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, Cu52Zr37Ti8In3 bulk metallic glass has been studied by nanoindentation. Three different ways for nanoindentation tests were employed. Load-control nanoindentation was used to investigate the effect of the loading rate on the hardness and Young’s modulus. Young’s modulus of the specimen shows a loading rate dependence. The constant-load indentation creep measurement was performed. The creep data were fitted with the generalized Kelvin model, and the compliance spectrum and retardation spectrum were derived. Furthermore, the storage compliance and loss compliance were also discussed. For characterizing the change of the hardness and Young’s modulus with increasing indentation depth, depth-control nanoindentation analysis was conducted. The results show that both the hardness and Young’s modulus decrease with nanoindentation depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L. Johnson, Nature 451, 1085 (2008)

    Article  ADS  Google Scholar 

  2. W.H. Wang, Prog. Mater. Sci. 52, 540 (2007)

    Article  Google Scholar 

  3. J.H. Xia, J.B. Qiang, Y.M. Wang, Q. Wang, C. Dong, Appl. Phys. Lett. 88, 101907 (2006)

    Article  ADS  Google Scholar 

  4. E.S. Park, H.J. Chang, D.H. Kim, Acta Mater. 56, 3120 (2008)

    Article  Google Scholar 

  5. J. Wu, Y. Pan, J. Huang, J. Pi, Thermochim. Acta 552, 15 (2013)

    Article  Google Scholar 

  6. T. Burgess, K.J. Laws, M. Ferry, Acta Mater. 56, 4829 (2008)

    Article  Google Scholar 

  7. Y.H. Lee, J.Y. Kim, S.H. Nahm, D. Kwon, Mater. Sci. Eng. A 449, 185 (2007)

    Google Scholar 

  8. L.A. Deibler, J.J. Lewandowski, Mater. Sci. Eng. A 527, 2214 (2010)

    Article  Google Scholar 

  9. B.C. Wei, L.C. Zhang, T.H. Zhang, D.M. Xing, J. Das, J. Eckert, J. Mater. Res. 22, 258 (2007)

    Article  ADS  Google Scholar 

  10. D. Fatay, J. Gubicza, J. Lendvai, J. Alloys Compd. 434, 75 (2007)

    Article  Google Scholar 

  11. Y.D. Sun, Z.Q. Li, J.S. Liu, M.Q. Cong, J.Y. Qin, J. Rare Earths 29, 253 (2011)

    Article  Google Scholar 

  12. W.H. Li, K. Shin, C.G. Lee, B.C. Wei, T.H. Zhang, Y.Z. He, Mater. Sci. Eng. A 478, 371 (2008)

    Article  Google Scholar 

  13. B.C. Wei, T.H. Zhang, W.H. Li, D.M. Xing, L.C. Zhang, Y.R. Wang, Mater. Trans. 46, 2959 (2005)

    Article  Google Scholar 

  14. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  ADS  Google Scholar 

  15. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)

    Article  ADS  Google Scholar 

  16. Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, H.F. Zhang, Mater. Sci. Eng. A 473, 105 (2008)

    Article  Google Scholar 

  17. M.H. Cohen, D. Turnbull, J. Chem. Phys. 31, 1164 (1959)

    Article  ADS  Google Scholar 

  18. D. Turnbull, M.H. Cohen, J. Chem. Phys. 34, 120 (1961)

    Article  ADS  Google Scholar 

  19. J. Sort, J. Fornell, W. Li, S. Surinach, M.D. Baro, J. Mater. Res. 24, 918 (2009)

    Article  ADS  Google Scholar 

  20. J.J. Pang, M.J. Tan, K.M. Liew, C. Shearwood, Physica B 407, 340 (2012)

    Article  ADS  Google Scholar 

  21. J.C.M. Li, Mater. Sci. Eng. A 322, 23 (2002)

    Article  Google Scholar 

  22. S. Yang, Y.W. Zhang, K.Y. Zeng, J. Appl. Phys. 95, 3655 (2004)

    Article  ADS  Google Scholar 

  23. L.C. Zhang, B.C. Wei, D.M. Xing, T.H. Zhang, W.H. Li, Y. Liu, Intermetallics 15, 791 (2007)

    Article  Google Scholar 

  24. J.D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980)

    Google Scholar 

  25. R.S. Lakes, Viscoelastic Materials (Cambridge University Press, New York, 2009)

    Book  Google Scholar 

  26. N.W. Tschoegl, I. Emri, Int. J. Polym. Mater. 18, 117 (1992)

    Article  Google Scholar 

  27. W.H. Wang, Prog. Mater. Sci. 57, 487 (2012)

    Article  Google Scholar 

  28. C.Q. Zhang, K.F. Yao, J. Univ. Sci. Technol. B 14, 68 (2007)

    Article  Google Scholar 

  29. J. Sort, J. Fornell, S. Surinach, M.D. Baro, Nanosci. Nanotechnol. Lett. 2, 298 (2010)

    Article  Google Scholar 

  30. B. Wolf, A. Richter, V. Weihnacht, Surf. Coat. Technol. 183, 141 (2004)

    Article  Google Scholar 

  31. J. Fornell, A. Concustell, S. Surinach, W.H. Li, N. Cuadrado, A. Gebert, M.D. Baro, J. Sort, Int. J. Plast. 25, 1540 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (Grant No. 50971041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Pan, Y. & Pi, J. Nanoindentation study of Cu52Zr37Ti8In3 bulk metallic glass. Appl. Phys. A 115, 305–312 (2014). https://doi.org/10.1007/s00339-013-7816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7816-y

Keywords

Navigation