Skip to main content

Advertisement

Log in

Influence of electric field annealing on atom diffusion in Cu/Ta/Si stacks

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this letter, we present a quantitative analysis of the influences caused by an electric field annealing on interface atom diffusion in a Cu/Ta/Si stack at a range of temperatures 450∼650 °C. The results indicate that the external electric field has a remarkably accelerated effect on Cu atom diffusion in the Ta layer and the failure of Ta as the diffusion barrier. The preexponent D 0 and the activation energy Q for Cu atom diffusion in the Ta layer were both decreased with the application of an external electric field. The activation energy for electric field annealed stacks is 1.22 eV, which is lower than that for annealed stacks (1.58 eV). The accelerating effect is mainly attributed to the perturbation of the electric state of the defects in the interface and grain interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Z. Tokei, K. Croes, G.P. Beyer, Microelectron. Eng. 87(3), 348 (2010)

    Article  Google Scholar 

  2. Z.H. Cao, F. Wang, L. Wang, X.K. Meng, Phys. Rev. B 81(11), 113405 (2010)

    Article  ADS  Google Scholar 

  3. K. Croes, C.J. Wilson, M. Lofrano, G.P. Beyer, Z. Tőkei, Microelectron. Eng. 88(5), 614 (2011)

    Article  Google Scholar 

  4. Z. Tokei, J. Van Aelst, C. Waldfried, O. Escorcia, P. Roussell, O. Richard, Y. Travaly, G.P. Beyer, K. Maex, in 2005 IEEE International Reliability Physics Symposium Proceedings—43rd Annual, (2005), p. 495

    Google Scholar 

  5. C. Zhao, Z. Tokei, A. Haider, S. Demuynck, Microelectron. Eng. 84(11), 2669 (2007)

    Article  Google Scholar 

  6. K.N. Tu, J. Appl. Phys. 94(9), 5451 (2003)

    Article  ADS  Google Scholar 

  7. W. Liu, T. Wu, A. Godfrey, Q. Liu, Scr. Mater. 52(6), 495 (2005)

    Article  Google Scholar 

  8. C.S. He, Y.D. Zhang, Y.N. Wang, X. Zhao, L. Zuo, C. Esling, Scr. Mater. 48(6), 737 (2003)

    Article  Google Scholar 

  9. C.W. Chen, J.S. Chen, J.S. Jeng, J. Electrochem. Soc. 155(6), H438 (2008)

    Article  Google Scholar 

  10. C.W. Chen, J.S. Jeng, J.S. Chen, J. Electrochem. Soc. 157(11), H997 (2010)

    Article  Google Scholar 

  11. M. Damayanti, T. Sritharan, Z.H. Gan, S.G. Mhaisalkar, N. Jiang, L. Chan, J. Electrochem. Soc. 153(6), J41 (2006)

    Article  Google Scholar 

  12. J.S. Fang, J.H. Lin, B.Y. Chen, T.S. Chin, J. Electrochem. Soc. 158(2), H97 (2011)

    Article  Google Scholar 

  13. R. Chan, T.N. Arunagiri, Y. Zhang, O. Chyan, R.M. Wallace, M.J. Kim, T.Q. Hurd, Electrochem. Solid-State Lett. 7(8), G154 (2004)

    Article  Google Scholar 

  14. C.X. Yang, S.J. Ding, D.W. Zhang, P.F. Wang, X.P. Qu, R. Liu, Electrochem. Solid-State Lett. 14(2), H84 (2011)

    Article  Google Scholar 

  15. L.C. Leu, D.P. Norton, L. McElwee-White, T.J. Anderson, Appl. Phys. A 94(3), 691 (2009)

    Article  ADS  Google Scholar 

  16. L. Wang, Z.H. Cao, J.A. Syed, K. Hu, Q.W. She, X.K. Meng, Electrochem. Solid-State Lett. 15(6), H188 (2012)

    Article  Google Scholar 

  17. L. Wang, Z.H. Cao, K. Hu, Q.W. She, X.K. Meng, Appl. Surf. Sci. 257(24), 10845 (2011)

    ADS  Google Scholar 

  18. K. Jung, H. Conrad, J. Mater. Sci. 42(11), 3994 (2007)

    Article  ADS  Google Scholar 

  19. D. Yang, H. Conrad, J. Mater. Sci. 43(13), 4475 (2008)

    Article  ADS  Google Scholar 

  20. S.C. Li, H. Conrad, Scr. Mater. 39(7), 847 (1998)

    Article  Google Scholar 

  21. S. Ghosh, A.H. Chokshi, P. Lee, R. Raj, J. Am. Ceram. Soc. 92(8), 1856 (2009)

    Article  Google Scholar 

  22. S.W. Kim, S.G. Kim, J.I. Jung, S.J.L. Kang, I.W. Chen, J. Am. Ceram. Soc. 94(12), 4231 (2011)

    Article  Google Scholar 

  23. Z.H. Cao, P.Y. Li, H.M. Lu, Y.L. Huang, Y.C. Zhou, X.K. Meng, Scr. Mater. 60(6), 415 (2009)

    Article  Google Scholar 

  24. Z.H. Cao, K. Hu, X.K. Meng, J. Appl. Phys. 106(11), 113513 (2009)

    Article  ADS  Google Scholar 

  25. Z.H. Cao, P.Y. Li, H.M. Lu, Y.L. Huang, X.K. Meng, J. Phys. D, Appl. Phys. 42(6), 065405 (2009)

    Article  ADS  Google Scholar 

  26. A.E. Kaloyeros, E. Eisenbraun, Annu. Rev. Mater. Sci. 30(1), 363 (2000)

    Article  ADS  Google Scholar 

  27. H.R. Gong, B.X. Liu, Appl. Phys. Lett. 83(22), 4515 (2003)

    Article  ADS  Google Scholar 

  28. S.W. Loh, D.H. Zhang, C.Y. Li, R. Liu, A.T.S. Wee, Thin Solid Films 462–463, 240 (2004)

    Article  Google Scholar 

  29. I. Blum, A. Portavoce, D. Mangelinck, R. Daineche, K. Hoummada, J.L. Labar, V. Carron, C. Perrin, J. Appl. Phys. 104(11) (2008)

  30. A. Kohn, M. Eizenberg, Y. Shacham-Diamand, J. Appl. Phys. 94(5), 3015 (2003)

    Article  ADS  Google Scholar 

  31. D. Gryaznov, J. Fleig, J. Maier, J. Appl. Phys. 103(6) (2008)

  32. L. Jiang, P. He, G. He, X. Zong, C. Lee, Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6525 (2002)

    Article  ADS  Google Scholar 

  33. J.C. Lin, C. Lee, J. Electrochem. Soc. 146(9), 3466 (1999)

    Article  Google Scholar 

  34. J. Nazon, B. Fraisse, J. Sarradin, S.G. Fries, J.C. Tedenac, N. Frety, Appl. Surf. Sci. 254(18), 5670 (2008)

    Article  ADS  Google Scholar 

  35. K.Y. Lim, Y.S. Lee, Y.D. Chung, I.W. Lyo, C.N. Whang, J.Y. Won, H.J. Kang, Appl. Phys. A 70(4), 431 (2000)

    Article  ADS  Google Scholar 

  36. L. Zuo, Y.D. Zhang, Z.C. Hu, H.I. Faraoun, X. Zhao, C. Esling, Adv. Mater. Res. 29–30, 123 (2007)

    Article  Google Scholar 

  37. Q. Xie, X. Qu, J. Tan, Y. Jiang, M. Zhou, T. Chen, G. Ru, Appl. Surf. Sci. 253(3), 1666 (2006)

    Article  ADS  Google Scholar 

  38. L.C. Leu, D.P. Norton, L. McElwee-White, T.J. Anderson, Appl. Phys. Lett. 92(11), 111917 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the PAPD, the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China, and the State Key Program for Basic Research of China. The authors also thank Mr. Syed Junaid Ali for his valuable help in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Wang or X. K. Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Cao, Z.H., Xu, J.H. et al. Influence of electric field annealing on atom diffusion in Cu/Ta/Si stacks. Appl. Phys. A 114, 1091–1095 (2014). https://doi.org/10.1007/s00339-013-7677-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7677-4

Keywords

Navigation