Skip to main content
Log in

Enhanced H2S gas-sensing properties of Pt-functionalized In2Ge2O7 nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In2Ge2O7 one-dimensional (1D) nanostructures were synthesized using an evaporation technique. The morphology, crystal structure, and sensing properties of the In2Ge2O7 nanostructures functionalized with Pt to H2S gas at 100 C were examined. The diameters and lengths of the 1D nanostructures were a few tens of nanometers and up to a few hundreds of micrometers, respectively. Pt nanoparticles with diameters of a few tens of nanometers were distributed over the In2Ge2O7 nanowires. Gas sensors fabricated from the multiple networked In2Ge2O7 nanowires functionalized with Pt exhibited enhanced electrical responses to H2S gas compared to the uncoated In2Ge2O7 nanowires. The responses of the nanowires were improved 240, 234, and 225 fold at H2S concentrations of 10, 25, and 50 ppm, respectively. The enhanced electrical response of the Pt-functionalized In2Ge2O7 nanowire sensor to H2S gas can be attributed to a combination of the spillover effect and the enhanced chemisorption, as well as the dissociation of the gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Adv. Mater. 15, 997 (2003)

    Article  Google Scholar 

  2. D.H. Zhang, Z.Q. Liu, C. Li, T. Tang, X.L. Liu, S. Han, B. Lei, C.W. Zhou, Nano Lett. 4, 1919 (2004)

    Article  ADS  Google Scholar 

  3. M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Angew. Chem. 114, 2511 (2002)

    Article  Google Scholar 

  4. Y.H. Lin, M.W. Huang, C.K. Liu, J.R. Chen, J.M. Wu, J. Electrochem. Soc. 156, K196 (2009)

    Article  Google Scholar 

  5. N.S. Ramgir, I.S. Mulla, K.P. Vijayamohanan, Sens. Actuators B, Chem. 107, 708 (2005)

    Article  Google Scholar 

  6. Q. Wan, T.H. Wang, Chem. Commun. 14, 3841 (2005)

    Article  Google Scholar 

  7. A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5, 667 (2005)

    Article  ADS  Google Scholar 

  8. Q. Kuang, C.S. Lao, Z. Li, Y.Z. Liu, Z.X. Xie, L.S. Zheng, Z.L. Wang, J. Phys. Chem. C 112, 11539 (2008)

    Article  Google Scholar 

  9. J.S. Wright, W. Lim, B.P. Gila, S.J. Pearton, J.L. Johnson, A. Ural, F. Ren, Sens. Actuators B, Chem. 140, 196 (2009)

    Article  Google Scholar 

  10. X. Xue, L. Xing, Y. Chen, S. Shi, Y. Wang, T. Wang, Phys. Chem. C 112, 12157 (2008)

    Article  Google Scholar 

  11. Y.J. Chen, C.L. Zhu, L.J. Wang, P. Cao, M.S. Cao, X.L. Shi, Nanotechnology 20, 045502 (2009)

    Article  ADS  Google Scholar 

  12. J.Y. Park, S.W. Choi, J.W. Lee, C. Lee, S.S. Kim, J. Am. Ceram. Soc. 92, 2551 (2009)

    Article  Google Scholar 

  13. T. Gaewdang, J.P. Chaminade, P. Gravereau, A. Garcia, C. Fouassier, M. Pouchard, P. Hagenmuller, B. Jacquier, Allg. Chem. 620, 1965 (1994)

    Article  Google Scholar 

  14. T.E. Gier, X. Bu, P. Feng, G.D. Stucky, Nature 395, 154 (1998)

    Article  ADS  Google Scholar 

  15. G. Liu, S. Zheng, G. Yang, Angew. Chem., Int. Ed. Engl. 46, 2827 (2007)

    Article  Google Scholar 

  16. S.S. Bayya, G.D. Chin, J.S. Sanghera, I.D. Aggarwal, Opt. Express 14, 11687 (2006)

    Article  ADS  Google Scholar 

  17. J. Zhan, Y. Bando, J.Q. Hu, L.W. Yin, X.L. Yuan, T. Sekiguchi, D. Golberg, Angew. Chem., Int. Ed. Engl. 45, 228 (2006)

    Article  Google Scholar 

  18. Y. Su, S. Li, L. Xu, Y.Q. Chen, Q.T. Zhou, B. Peng, S. Yin, X. Meng, X.M. Liang, Y. Feng, Nanotechnology 17, 6007 (2006)

    Article  ADS  Google Scholar 

  19. C. Yan, T. Zhang, P.S. Lee, Cryst. Growth Des. 8, 144 (2008)

    Google Scholar 

  20. C. Yan, N. Singh, P.S. Lee, Cryst. Growth Des. 9, 3697 (2009)

    Article  Google Scholar 

  21. K. Ito, T. Ohgami, Appl. Phys. Lett. 60, 938 (1992)

    Article  ADS  Google Scholar 

  22. S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, S. Takahashi, Sens. Actuators B, Chem. 66, 142 (2000)

    Article  Google Scholar 

  23. S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, M. Washiya, Sens. Actuators B, Chem. 93, 142 (2003)

    Article  Google Scholar 

  24. N. Matsuyama, S. Okazaki, H. Nakagawa, H. Sone, K. Fukuda, Thin Solid Films 517, 4650 (2009)

    Article  ADS  Google Scholar 

  25. S. Sumida, S. Okazaki, S. Asakura, S. Nakagawa, H. Murayama, T. Hasegawa, Sens. Actuators B 108, 508 (2005)

    Article  Google Scholar 

  26. H. Nakagawa, N. Yamamoto, S. Okazaki, T. Chinzei, S. Asakura, Sens. Actuators B, Chem. 93, 468 (2003)

    Article  Google Scholar 

  27. H. Shanak, H. Schmitt, J. Nowoczin, C. Ziebert, Solid State Ion. 171, 99 (2004)

    Article  Google Scholar 

  28. H.J. Chen, N.S. Xu, S.Z. Deng, D.Y. Lu, Z.L. Li, J. Zhou, J. Chen, Nanotechnology 18, 205701 (2007)

    Article  ADS  Google Scholar 

  29. J. Chen, K. Wang, L. Hartman, W. Zhou, J. Phys. Chem. C 112, 16017 (2008)

    Article  Google Scholar 

  30. I. Barin, Thermochemical Data of Pure Substances, 3rd edn. (VCH, Weinheim, Basel, 1995)

    Book  Google Scholar 

  31. A.J. Du, S.C. Smith, X.D. Yao, G.Q. Lu, J. Am. Chem. Soc. 129, 10201 (2007)

    Article  Google Scholar 

  32. G. Jimenez-Cadena, J. Riu, F.X. Rius, Analyst 132, 1083 (2007)

    Article  ADS  Google Scholar 

  33. P. Yang, C.M. Lieber, Science 273, 1836 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by Key Research Institute Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2012-0005858).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C., Park, S., Kim, H. et al. Enhanced H2S gas-sensing properties of Pt-functionalized In2Ge2O7 nanowires. Appl. Phys. A 114, 591–595 (2014). https://doi.org/10.1007/s00339-013-7622-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7622-6

Keywords

Navigation