Skip to main content
Log in

Effect of ultrasonic treatment before and after hydrothermal process on the morphologies and formation mechanism of ZnO nanorods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO nanorods were fabricated by ultrasonic treatment before and after a hydrothermal process. The morphology and structure of the nanorods were individually characterized by scanning electron microscopy and X-ray diffraction. The results show that before the hydrothermal process, fore-ultrasonic treatment can directly gain ZnO nanorods which mainly experienced four conversion stages from initial bulk Zn(OH)2, a coexisting phase of bulk Zn(OH)2 with ZnO nanoslices, ZnO nanoslices with flower-like ZnO nanorods and finally to purely flower-like ZnO nanorods. After the hydrothermal process, the post-ultrasonic treatment mainly influences the aggregation degree of the ZnO nanorods. The formation mechanism of ultrasonic treatment on ZnO nanorods is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Wang, X. Wang, C.J. Summers, Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4, 423–426 (2004)

    Article  ADS  Google Scholar 

  2. S.R. Mahmoodi, B. Raissi, E. Marzbanrad, N. Shojayi, A. Aghaei, C. Zamani, Dielectrophoretic assembly of ZnO nanorods for gas sensing. Procedia Chem. 1, 947–950 (2009)

    Article  Google Scholar 

  3. R. Subasri, M. Asha, K. Hembram, G. Rao, T.N. Rao, Microwave sintering of doped nanocrystalline ZnO and characterization for varistor applications. Mater. Chem. Phys. 115, 677–684 (2009)

    Article  Google Scholar 

  4. S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666–671 (2011)

    Article  ADS  Google Scholar 

  5. Q. Zhao, T. Xie, L. Peng, Y. Lin, P. Wang, L. Peng, D. Wang, Size-and orientation-dependent photovoltaic properties of ZnO nanorods. J. Phys. Chem. C 111, 17136–17145 (2007)

    Article  Google Scholar 

  6. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fiévet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006)

    Article  ADS  Google Scholar 

  7. D. Zhou, A.A. Keller, Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res. 44, 2948–2956 (2010)

    Article  Google Scholar 

  8. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12, 323–331 (2002)

    Article  Google Scholar 

  9. S.S. Manoharan, M.L. Rao, Sonochemical synthesis of nanomaterials. ChemInform 35, 67–82 (2004)

    Article  Google Scholar 

  10. P. Banerjee, S. Chakrabarti, S. Maitra, B.K. Dutta, Zinc oxide nano-particles-sonochemical synthesis, characterization and application for photo-remediation of heavy metal. Ultrason. Sonochem. 19, 85–93 (2012)

    Article  Google Scholar 

  11. Y. Chen, Z.G. Chen, X.Z. Li, A.L. Chen, Effect of ultrasonic radiation on preparation of nano-sized CeO2 powder in alcohol/water reaction system. Chem. Eng. China 35, 57–60 (2007)

    Google Scholar 

  12. Y.L. Wei, P.C. Chang, Characteristics of nano zinc oxide synthesized under ultrasonic condition. J. Phys. Chem. Solids 69, 688–692 (2008)

    Article  ADS  Google Scholar 

  13. D.T.N. Anh, H.T.L. Phuong, H.T.H. Thao, N.T.C. Ha, N.X. Hoan, Crystal structures and properties of ZnO nanopowders prepared by ultrasonic method. E-J. Surf. Sci. Nanotechnol. 9, 482–485 (2011)

    Article  Google Scholar 

  14. K.S. Suslick, Sonochemistry. Science 247, 1439–1445 (1990)

    Article  ADS  Google Scholar 

  15. X.L. Hu, Y.J. Zhu, S.W. Wang, Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Mater. Chem. Phys. 88, 421–426 (2004)

    Article  Google Scholar 

  16. K.S. Suslick, Y. Didenko, M.M. Fang, T. Hyeon, K.J. Kolbeck, W.B. McNamara III, M.M. Mdleleni, M. Wong, Acoustic cavitation and its chemical consequences. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 357, 335–353 (1999)

    Article  ADS  Google Scholar 

  17. I.A. Siddiquey, T. Furusawa, M. Sato, N.M. Bahadur, M. Mahbubul Alam, N. Suzuki, Sonochemical synthesis, photocatalytic activity and optical properties of silica coated ZnO nanoparticles. Ultrason. Sonochem. 19, 750–755 (2012)

    Article  Google Scholar 

  18. R.S. Yadav, P. Mishra, A.C. Pandey, Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method. Ultrason. Sonochem. 15, 863–868 (2008)

    Article  Google Scholar 

  19. S. Zhou, R. Yuan, S. Lou, Y. Wang, H. Yuan, G. Zhu, L. Liu, Y. Hao, N. Li, Sonochemical synthesis and optical properties of amorphous ZnO nanowires. J. Nanopart. Res. 13, 4511–4518 (2011)

    Article  Google Scholar 

  20. H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, D. Que, Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J. Phys. Chem. B 108, 3955–3958 (2004)

    Article  Google Scholar 

  21. R. Hiller, S.J. Putterman, B.P. Barber, Spectrum of synchronous picosecond sonoluminescence. Phys. Rev. Lett. 69, 1182–1184 (1992)

    Article  ADS  Google Scholar 

  22. B.P. Barber, S.J. Putterman, Observation of synchronous picosecond sonoluminescence. Nature 352, 318–320 (1991)

    Article  ADS  Google Scholar 

  23. Y. Shen, T. Yamazaki, Z. Liu, D. Meng, T. Kikuta, N. Nakatani, Influence of effective surface area on gas sensing properties of WO3 sputtered thin films. Thin Solid Films 517, 2069 (2009)

    Article  ADS  Google Scholar 

  24. X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater. Chem. Phys. 78, 99–104 (2003)

    Article  ADS  Google Scholar 

  25. J.Q. Xu, Y.P. Chen, D.Y. Chen, J.N. Shen, Hydrothermal synthesis and gas sensing characters of ZnO nanorods. Sens. Actuators B 113, 526–531 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51201052), the Special Fund for Scientific and Technological Innovative Talents in Harbin City (No. 2012RFQXG107) and the Natural Science Foundation of Heilongjiang Province of China (No. E201056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Guo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 577 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J.J., Guo, E.J., Yue, H.Y. et al. Effect of ultrasonic treatment before and after hydrothermal process on the morphologies and formation mechanism of ZnO nanorods. Appl. Phys. A 114, 521–528 (2014). https://doi.org/10.1007/s00339-013-7604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7604-8

Keywords

Navigation