Skip to main content
Log in

Ion implanted dielectric elastomer circuits

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles.

As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Trivedi, C.D. Rahn, W.M. Kier, I.D. Walker, Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008)

    Article  Google Scholar 

  2. R.E. Pelrine, R.D. Kornbluh, Q. Pei, J.P. Joseph, High-speed electrically actuated elastomers with strain greater than 100 %. Science 287, 836–839 (2000)

    Article  ADS  Google Scholar 

  3. I.A. Anderson, T.A. Gisby, T.G. McKay, B.M. O’Brien, E.P. Calius, Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112(4), 041101 (2012)

    Article  ADS  Google Scholar 

  4. R.E. Pelrine, R.D. Kornbluh, Q. Pei, S. Stanford, S. Oh, J. Eckerle, R. Full, M. Rosenthal, K. Meijer, Dielectric elastomer artificial muscle actuators: toward biomimetic motion. Proc. SPIE 4695 (2002)

  5. K. Jung, J.C. Koo, J.-d. Nam, Y.K. Lee, H.R. Choi, Artificial annelid robot driven by soft actuators. Bioinspir. Biomim. 2, S42–S49 (2007)

    Article  ADS  Google Scholar 

  6. B. O’Brien, T. Gisby, S. Xie, E. Calius, I. Anderson, FEA of dielectric elastomer minimum energy structures as a tool for biomimetic design. Proc. SPIE 7287 (2009)

  7. C. Jordi, S. Michel, E. Fink, Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators. Bioinspir. Biomim. 5(2) (2010)

  8. Q. Pei, M.A. Rosenthal, R. Pelrine, S. Stanford, R.D. Kornbluh, Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots. Proc. SPIE 5051 (2003)

  9. J. Rossiter, P. Walters, B. Stoimenov, Printing 3D dielectric elastomer actuators for soft robotics. Proc. SPIE 7287 (2009)

  10. B.A. Trimmer, New challenges in biorobotics: incorporating soft tissue into control systems. Appl. Bionics Biomech. 5(3), 119–126 (2008)

    Article  Google Scholar 

  11. G. Sumbre, Y. Gutfreund, G. Fiorito, T. Flash, B. Hochner, Control of octopus arm extension by a peripheral motor program. Science 293(5536), 1845–1848 (2001)

    Article  ADS  Google Scholar 

  12. Y. Yekutieli, G. Sumbre, T. Flash, B. Hochner, How to move with no rigid skeleton? Biologist 49(6), 250–254 (2002)

    Google Scholar 

  13. T.A. Gisby, S. Xie, E.P. Calius, I.A. Anderson, Integrated sensing and actuation of muscle-like actuators. Proc. SPIE 7287 (2009)

  14. M. Migita, E. Mizukami, Y.P. Gunji, Flexibility in starfish behavior by multi-layered mechanism of self-organization. Biosystems 82(2), 107–115 (2005)

    Article  Google Scholar 

  15. K. Agata, T. Inoue, Survey of the differences between regenerative and non-regenerative animals. Dev. Growth Differ. 54(2), 143–152 (2012)

    Article  Google Scholar 

  16. T. Rubilar, C. Pastor, E. Díaz de Vivar, Timing of fission in the starfish Allostichaster capensis (Echinodermata: Asteroidea) in laboratory. Rev. Biol. Trop. 53(Suppl 3), 299–303 (2005)

    Google Scholar 

  17. J.A. Rogers, Y. Huang, A curvy, stretchy future for electronics. Proc. Natl. Acad. Sci. USA 106(27), 10875–10876 (2009)

    Article  ADS  Google Scholar 

  18. D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal electronics. Science 333(6044), 838–843 (2011)

    Article  ADS  Google Scholar 

  19. A. Jong-Hyun, J. Jung Ho, Stretchable electronics: materials, architectures and integrations. J. Phys. D, Appl. Phys. 45(10), 103001 (2012)

    Article  ADS  Google Scholar 

  20. B.M. O’Brien, E.P. Calius, T. Inamura, S.Q. Xie, I.A. Anderson, Dielectric elastomer switches for smart artificial muscles. Appl. Phys. A, Mater. Sci. Process. 100(2), 385–389 (2010)

    Article  ADS  Google Scholar 

  21. L. Chen, G. Chen, L. Lu, Piezoresistive behavior study on finger-sensing silicone rubber/graphite nanosheet nanocomposites. Adv. Funct. Mater. 17(6), 898–904 (2007)

    Article  Google Scholar 

  22. G. Canavese, M. Lombardi, S. Stassi, C.F. Pirri, Comprehensive characterization of large piezoresistive variation of Ni-PDMS composites. Appl. Mech. Mater. 110–116, 1336–1344 (2012)

    Google Scholar 

  23. R. Strümpler, J. Glatz-Reichenbach, Conducting polymer composites. J. Electroceram. 3(4), 329–346 (1999)

    Article  Google Scholar 

  24. B.M. O’Brien, T.G. McKay, S.Q. Xie, E.P. Calius, I.A. Anderson, Dielectric elastomer memory. Proc. SPIE 7976 (2011)

  25. T.G. McKay, B.M. O’Brien, E.P. Calius, I.A. Anderson, Soft generators using dielectric elastomers. Appl. Phys. Lett. 98, 142903 (2011)

    Article  ADS  Google Scholar 

  26. B.M. O’Brien, T.G. McKay, T.A. Gisby, I.A. Anderson, Rotating turkeys and self-commutating artificial muscle rotary motors. Appl. Phys. Lett. 100, 074108 (2012)

    Article  ADS  Google Scholar 

  27. B.M. O’Brien, I.A. Anderson, An artificial muscle ring oscillator. IEEE/ASME Trans. Mechatron. 17(1), 197–200 (2012)

    Article  Google Scholar 

  28. M. Niklaus, H.R. Shea, Electrical conductivity and Young’s modulus of flexible nanocomposites made by metal-ion implantation of polydimethylsiloxane: the relationship between nanostructure and macroscopic properties. Acta Mater. 59(2), 830–840 (2011)

    Article  Google Scholar 

  29. S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Large-stroke dielectric elastomer actuators with ion-implanted electrodes. J. Microelectromech. Syst. 18(6), 1300–1308 (2009)

    Article  Google Scholar 

  30. S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Adv. Funct. Mater. 19(3), 470–478 (2009)

    Article  Google Scholar 

  31. P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhailov, M. Dadras, N.-F. deRooij, H. Shea, Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes. Sensors Actuators A 130–131, 147–154 (2006)

    Article  Google Scholar 

  32. S. Akbari, H.R. Shea, Microfabrication and characterization of an array of dielectric elastomer actuators generating uniaxial strain to stretch individual cells. J. Micromech. Microeng. 22(4) (2012)

  33. R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field deformation of elastomeric dielectrics for actuators. Mater. Sci. Eng. C 11, 89–100 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Royal Society of New Zealand via B.M. O’Brien’s Rutherford Foundation Postdoctoral Fellowship, the Swiss National Science Foundation grant 200020-130453, the Indo Swiss Joint Research Programme (ISJRP) and the Auckland Bioengineering Institute. The authors would like to thank L. Maffli, S. Akbari, P. Rinne, M. Poliero, V. Perret, P. Rosset, S. Pilkington, and M. O’Brien.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. O’Brien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Brien, B.M., Rosset, S., Anderson, I.A. et al. Ion implanted dielectric elastomer circuits. Appl. Phys. A 111, 943–950 (2013). https://doi.org/10.1007/s00339-012-7319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7319-2

Keywords

Navigation