Skip to main content
Log in

Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminum

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we present a hybrid laser-plasma ablation method for material processing applications. For this purpose, a coaxial configuration consisting of a low-temperature atmospheric pressure argon plasma beam and a Nd:YAG-laser at a wavelength of 355 nm was used. Both pure laser ablation and hybrid laser-plasma ablation experiments were performed on aluminum at different laser energies and numbers of laser pulses. In the case of hybrid ablation, both the depth and volume ablation rates were increased significantly in comparison to pure laser ablation. This effect is described by a linear interrelationship of both the ablation rate and the particularly applied laser energy and is thus due to energetic synergies. Such behavior can be explained by the de-excitation of argon plasma species and an accompanying energy deposition at the generated debris and the sample surface. The energetic effect was found to abate with increasing ablation depth. However, considerable improvements in terms of ablation rate are achieved in the near-surface depth range of approx. 500 microns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Armon, M. Hill, I.J. Spalding, Y. Zvirin, J. Appl. Phys. 65, 5003–5006 (1989)

    Article  ADS  Google Scholar 

  2. M. Lapczyna, K.P. Chen, P.R. Herman, H.W. Tan, R.S. Marjoribanks, Appl. Phys. A 69 [Suppl.], S883–S886 (1999)

    Article  ADS  Google Scholar 

  3. C. Gerhard, F. Druon, P. Blandin, M. Hanna, F. Balembois, P. Georges, F. Falcoz, Appl. Opt. 47(7), 967–974 (2008)

    Article  ADS  Google Scholar 

  4. A.C. Forsman, P.S. Banks, M.D. Perry, E.M. Campbell, A.L. Dadell, M.S. Armas, J. Appl. Phys. 98, 1.1–1.6 (2005)

    Article  Google Scholar 

  5. J. Lu, R.Q. Xu, X. Chen, Z.H. Shen, X.W. Ni, S.Y. Zhang, C.M. Gao, J. Appl. Phys. 95, 3890–3894 (2004)

    Article  ADS  Google Scholar 

  6. W. Perrie, M. Gill, G. Robinson, P. Fox, W. O’Neill, Appl. Surf. Sci. 230, 50–59 (2004)

    Article  ADS  Google Scholar 

  7. P.M. Schaible, W.C. Metzger, J.P. Anderson, J. Vac. Sci. Technol. 15, 334–337 (1978)

    Article  ADS  Google Scholar 

  8. D.A. Danner, M. Dalvie, D.W. Hess, J. Electrochem. Soc. 134, 669–673 (1987)

    Article  Google Scholar 

  9. J.W. Coburn, H.F. Winters, J. Vac. Sci. Technol. 16, 391–403 (1979)

    Article  ADS  Google Scholar 

  10. S. Brückner, S. Rösner, C. Gerhard, S. Wieneke, W. Viöl, Mater. Test 53, 639–642 (2011)

    Google Scholar 

  11. T.C. Manley, Electrochem. Soc. Trans. 84, 83–96 (1943)

    Article  Google Scholar 

  12. A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, W. Viöl, New J. Phys. 11, 115025 (2009)

    Article  ADS  Google Scholar 

  13. T.A. Mai, Ind. Laser Sol. 23, 16–18 (2008)

    Google Scholar 

  14. A. Weck, T.H.R. Crawford, D.S. Wilkinson, H.K. Haugen, J.S. Preston, Appl. Phys. A 90, 537–543 (2008)

    Article  ADS  Google Scholar 

  15. G.K.L. Ng, L. Li, Opt. Laser Technol. 33, 393–402 (2001)

    Article  ADS  Google Scholar 

  16. C. Körner, R. Mayerhofer, M. Hartmann, H.W. Bergmann, Appl. Phys. A 63, 123–131 (1996)

    Article  ADS  Google Scholar 

  17. A. Bogaerts, R. Gijbels, Spectrochim. Acta B 52, 553–565 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Regional Development Funds (EFRE) and the Workgroup Innovative Projects of Lower Saxony (AGiP) in the frame of the Lower Saxony Innovation Network for Plasma Technology (NIP). The authors thank Rika Unkelbach and Lucas Beste for their help during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Viöl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhard, C., Roux, S., Brückner, S. et al. Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminum. Appl. Phys. A 108, 107–112 (2012). https://doi.org/10.1007/s00339-012-6942-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6942-2

Keywords

Navigation