Skip to main content
Log in

Laser-induced thermoelastic Leaky Lamb waves at the fluid–solid interface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A model based on the theory of fluid–structure interaction is developed to simulate the laser thermoelastic generation and propagation of Leaky Lamb waves at the water–aluminum interface. Each component of displacement, stress, and temperature are derived in transform domain by the photothermoelastic transfer matrix method. The time domain solutions are obtained by numerically inverting the transforms while the dispersion curves and attenuation curves for the leaky waves are also calculated. Then the propagation characteristics of different modes are analyzed. The model establishes a quantitative relation between the laser parameters, the material parameters, the corresponding waveforms, and the dispersion curves, which provides a useful tool for the Leaky Lamb waves applied to nondestructive evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.F.M. Osborne, S.D. Hart, J. Acoust. Soc. Am. 17, 1 (1945)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. R. Fiorito, W. Madigosky, H. Überall, J. Acoust. Soc. Am. 66, 1857 (1979)

    Article  ADS  Google Scholar 

  3. V. Dayal, V.K. Kinra, J. Acoust. Soc. Am. 85, 2268 (1989)

    Article  ADS  Google Scholar 

  4. D.E. Chimenti, Y. Bar-Cohen, in IEEE 1985 Ultrasonics Symposium (1985), p. 1028

    Google Scholar 

  5. Y. Bar-cohen, A. Mal, S.S. Lih, Z. Chang, Proc. SPIE 3586, 250 (1999)

    Article  ADS  Google Scholar 

  6. D.E. Chimenti, A.H. Nayfeh, J. Nondestruct. Eval. 9, 51 (1990)

    Article  Google Scholar 

  7. A.H. Nayfeh, P.B. Nagy, J. Acoust. Soc. Am. 101, 2649 (1997)

    Article  ADS  Google Scholar 

  8. J.N. Sharma, V. Pathania, J. Therm. Stresses 28, 485 (2005)

    Article  Google Scholar 

  9. A.T. De Hoop, J.H.M.T. van der Hijden, J. Acoust. Soc. Am. 74, 333 (1983)

    Article  ADS  MATH  Google Scholar 

  10. A.T. De Hoop, J.H.M.T. van der Hijden, J. Acoust. Soc. Am. 75, 1790 (1984)

    Google Scholar 

  11. J. Zhu, J.S. Popovicsa, J. Acoust. Soc. Am. 116, 2101 (2004)

    Article  ADS  Google Scholar 

  12. C.B. Scruby, Ultrasonics 27, 195 (1989)

    Article  Google Scholar 

  13. L.R.F. Rose, J. Acoust. Soc. Am. 75, 723 (1984)

    Article  ADS  MATH  Google Scholar 

  14. J.B. Spicer, A.O.W. McKie, J.W. Wagner, Appl. Phys. Lett. 57, 1882 (1990)

    Article  ADS  Google Scholar 

  15. F.A. McOonald, Appl. Phys. Lett. 54, 1504 (1989)

    Article  ADS  Google Scholar 

  16. P.A. Doyle, J. Phys. D, Appl. Phys. 19, 1613 (1986)

    Article  ADS  Google Scholar 

  17. F.A. McOonald, Appl. Phys. Lett. 56, 230 (1990)

    Article  ADS  Google Scholar 

  18. V. Gusev, C. Desmet, W. Lauriks, C. Glorieux, J. Thoen, J. Acoust. Soc. Am. 100, 1514 (1996)

    Article  ADS  Google Scholar 

  19. C. Desmet, V. Gusev, W. Lauriks, Opt. Lett. 22, 69 (1997)

    Article  ADS  Google Scholar 

  20. C. Desmet, V. Gusev, C. Glorieux, W. Lauriks, J. Thoen, J. Acoust. Soc. Am. 103, 618 (1998)

    Article  ADS  Google Scholar 

  21. W.T. Thomson, J. Appl. Phys. 21, 89 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. A. Cheng, T.W. Murray, J.D. Achenbach, J. Acoust. Soc. Am. 110, 848 (2001)

    Article  ADS  Google Scholar 

  23. Z. Feifei, Ph.D. Thesis, Northwestern University, 2006

  24. Y. Zhao, Z. Shen, J. Liu, X. Ni, Phys. Lett. A 370, 104 (2007)

    Article  ADS  MATH  Google Scholar 

  25. B.Q. Xu, Z.H. Shen, X.W. Ni, J. Lu, J. Appl. Phys. 95, 2116 (2004)

    Article  ADS  Google Scholar 

  26. Z. Bozoki, A. Miklos, O. Bicanic, Appl. Phys. Lett. 64, 1362 (1994)

    Article  ADS  Google Scholar 

  27. F.R. De Hoog, J.H. Knight, A.N. Stokes, SIAM J. Sci. Stat. Comput. 3, 357 (1982)

    Article  MATH  Google Scholar 

  28. J.P. Sessarego, J. Sageloli, C. Gazanhes, H. Überall, J. Acoust. Soc. Am. 101, 135 (1997)

    Article  ADS  Google Scholar 

  29. F. Jenot, M. Ouaftouh, M. Duquennoy, M. Ourak, J. Appl. Phys. 97, 094905 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai Qiang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C.G., Xu, B.Q. & Xu, G.D. Laser-induced thermoelastic Leaky Lamb waves at the fluid–solid interface. Appl. Phys. A 105, 379–386 (2011). https://doi.org/10.1007/s00339-011-6498-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6498-6

Keywords

Navigation