Skip to main content
Log in

A study of the switching mechanism and electrode material of fully CMOS compatible tungsten oxide ReRAM

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tungsten oxide (WO X ) resistive memory (ReRAM), a two-terminal CMOS compatible nonvolatile memory, has shown promise to surpass the existing flash memory in terms of scalability, switching speed, and potential for 3D stacking. The memory layer, WO X , can be easily fabricated by down-stream plasma oxidation (DSPO) or rapid thermal oxidation (RTO) of W plugs universally used in CMOS circuits. Results of conductive AFM (C-AFM) experiment suggest the switching mechanism is dominated by the REDOX (Reduction-oxidation) reaction—the creation of conducting filaments leads to a low resistance state and the rupturing of the filaments results in a high resistance state. Our experimental results show that the reactions happen at the TE/WO X interface. With this understanding in mind, we proposed two approaches to boost the memory performance: (i) using DSPO to treat the RTO WO X surface and (ii) using Pt TE, which forms a Schottky barrier with WO X . Both approaches, especially the latter, significantly reduce the forming current and enlarge the memory window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. Kim, B.J. Choi, C.S. Hwang, Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films. Appl. Phys. Lett. 90, 242906 (2007)

    Article  ADS  Google Scholar 

  2. R.G. Sharpe, P.W. Palmer, Concerted regeneration of electroformed metal-insulator-metal devices. J. Appl. Phys. 79, 8565 (1996)

    Article  ADS  Google Scholar 

  3. Y. Ogimoto, Y. Tamai, M. Kawasaki, Y. Tokura, Resistance switching memory device with a nanoscale confined current path. Appl. Phys. Lett. 90, 143515 (2007)

    Article  ADS  Google Scholar 

  4. C.B. Lee, B.S. Kang, M.J. Lee, S.E. Ahn, G. Stefanovich, W.X. Xianyu, K.H. Kim, J.H. Hur, H.X. Yin, Y. Park, I.K. Yoo, J.-B. Park, B.H. Park, Electromigration effect of Ni electrodes on the resistive switching characteristics of NiO thin films. Appl. Phys. Lett. 91, 082104 (2007)

    Article  ADS  Google Scholar 

  5. D. Lee, D.J. Seong, I. Jo, F. Xiang, R. Dong, S. Oh, H. Hwang, Resistance switching of copper doped MoO x films for nonvolatile memory applications. Appl. Phys. Lett. 90, 122104 (2007)

    Article  ADS  Google Scholar 

  6. H. Shima, F. Takano, H. Akinaga, Y. Tamai, I.H. Inoue, H. Takagi, Resistance switching in the metal deficient-type oxides: NiO and CoO. Appl. Phys. Lett. 91, 012901 (2007)

    Article  ADS  Google Scholar 

  7. C.H. Ho, E.K. Lai, M.D. Lee, C.L. Pan, Y.D. Yao, K.Y. Hsieh, R. Liu, C.-Y. Lu, A highly reliable self-aligned graded oxide WO x resistance memory: conduction mechanisms and reliability, in Symp. VLSI Tech. (2007), pp. 228–229

    Chapter  Google Scholar 

  8. W.C. Chien, Y.C. Chen, E.K. Lai, Y.D. Yao, P. Lin, S.F. Horng, J. Gong, T.H. Chou, H.M. Lin, M.N. Chang, Y.H. Shih, K.Y. Hsieh, R. Liu, C.-Y. Lu, Unipolar switching behaviors of RTO WO X RRAM. IEEE Electron Device Lett. 31, 126–128 (2010)

    Article  ADS  Google Scholar 

  9. R. Waser, Electrochemical and thermochemical memories, in IEDM., Tech. Dig. (2008), pp. 289–292

    Google Scholar 

  10. Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, M. Oshima, Highly reliable TaO x ReRAM and direct evidence of redox reaction mechanism, in IEDM., Tech. Dig. (2008), pp. 293–296

    Google Scholar 

  11. W.C. Chien, Y.C. Chen, E.K. Lai, Y.Y. Lin, K.P. Chang, Y.D. Yao, P. Lin, J. Gong, S.C. Tsai, C.H. Lee, S.H. Hsieh, C.F. Chen, Y.H. Shih, K.Y. Hsieh, R. Liu, C.-Y. Lu, High-speed multilevel resistive RAM using RTO WO X , in SSDM (2009), pp. 1206–1207, G-7-3

    Google Scholar 

  12. W.C. Chien, K.P. Chang, Y.C. Chen, E.K. Lai, H. Mähne, Y.D. Yao, P. Lin, J. Gong, S.H. Hsieh, K.Y. Hsieh, R. Liu, C.-Y. Lu, Multi-level switching characteristics for WO X resistive RAM (RRAM), in SSDM (2008), pp. 1170–1171, J-9-5

    Google Scholar 

  13. K.P. Chang, W.C. Chien, Y.C. Chen, E.K. Lai, S.H. Hsieh, Y.D. Yao, J. Go, K.Y. Hsieh, R. Liu, C.-Y. Lu, Low-voltage and fast-speed forming process of tungsten oxide resistive memory, in SSDM (2008), pp. 1168–1169, J-9-4

    Google Scholar 

  14. W.C. Chien, E.K. Lai, K.P. Chang, C.H. Yeh, M.H. Hsueh, Y.D. Yao, T. Luoh, S.H. Hsieh, T.H. Yang, K.C. Chen, Y.C. Chen, K.Y. Hsieh, R. Liu, C.-Y. Lu, Unipolar switching characteristics for self-aligned WO X resistance RAM R-RAM, in VLSI-TSA Technical Program Committee, VLSI-TSA, Session 9, T97 (2008), pp. 144–145

    Google Scholar 

  15. W.C. Chien, Y.R. Chen, Y.C. Chen, A.T.H. Chuang, F.M. Lee, Y.Y. Lin, E.K. Lai, Y.H. Shih, K.Y. Hsieh, C.-Y. Lu, A forming-free WO X resistive memory using a novel self-aligned field enhancement feature with excellent reliability and scalability, in IEDM., Tech. Dig. (2010), pp. 440–443

    Google Scholar 

  16. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Willey/Central Book Company, New York, 1985), p. 403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. C. Chien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, W.C., Chen, Y.C., Lai, E.K. et al. A study of the switching mechanism and electrode material of fully CMOS compatible tungsten oxide ReRAM. Appl. Phys. A 102, 901–907 (2011). https://doi.org/10.1007/s00339-011-6271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6271-x

Keywords

Navigation