Skip to main content
Log in

Transverse thermoelectric devices

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Multilayer structures A–B–A⋅⋅⋅ consisting of alternating layers of a metal A and a semiconductor B can show large anisotropy in their transport properties. In tilted multilayer structures, where layer planes and sample surface include a nonzero tilt angle, nonvanishing off-diagonal elements in the sample’s transport tensors lead to transverse Seebeck and Peltier effects. Achievable temperature differences and figures of merit for transverse Peltier cooling are discussed and compared with experiments, coefficients of performance for transverse power generation are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.J. von Gutfeld, J. Appl. Phys. 47, 3436 (1976)

    Article  ADS  Google Scholar 

  2. L.R. Testardi, Appl. Phys. Lett. 64, 2347 (1994)

    Article  ADS  Google Scholar 

  3. H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K.F. Renk, W. Prettl, Appl. Phys. Lett. 60, 501 (1992)

    Article  ADS  Google Scholar 

  4. Th. Zahner, R. Förg, H. Lengfellner, Appl. Phys. Lett. 73, 1364 (1998)

    Article  ADS  Google Scholar 

  5. A. Kyarad, H. Lengfellner, Appl. Phys. Lett. 85, 5613 (2004)

    Article  ADS  Google Scholar 

  6. Th. Zahner, R. Stierstorfer, S. Reindl, T. Schauer, A. Penzkofer, H. Lengfellner, Physica C 313, 31 (1999)

    Article  ADS  Google Scholar 

  7. V.P. Babin, T.S. Gudkin, Z.M. Dashevskii, L.D. Dudkin, E.K. Iordanishvilli, V.I. Kaidanov, N.V. Kolomoets, O.M. Narva, L.S. Stil’bans, Sov. Phys. Semicond. 8, 478 (1974)

    Google Scholar 

  8. T.S. Gudkin, E.K. Jordanishvilli, E.E. Fiskind, Sov. Tech. Phys. Lett. 4, 607 (1978)

    Google Scholar 

  9. Z.H. He, Z.G. Ma, Q.Y. Li, Y.Y. Luo, J.X. Zhang, Appl. Phys. Lett. 69, 3587 (1996)

    Article  ADS  Google Scholar 

  10. A. Kyarad, H. Lengfellner, Appl. Phys. Lett. 89, 192103 (2006)

    Article  ADS  Google Scholar 

  11. D.K.C. MacDonald, Thermoelectricity: An Introduction to the Principles (Wiley, New York, 1962)

    MATH  Google Scholar 

  12. J.F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1979)

    Google Scholar 

  13. H.J. Goldsmid, Proc. Phys. Soc. 71, 633 (1958)

    Article  Google Scholar 

  14. R.R. Heikes, R.W. Ure Jr., Thermoelectricity: Science and Engineering (Interscience Publisher, New York/London, 1961)

    Google Scholar 

  15. H. Lengfellner, S. Zeuner, W. Prettl, K.F. Renk, Europhys. Lett. 25, 375 (1994)

    Article  ADS  Google Scholar 

  16. K. Fischer, C. Stoiber, A. Kyarad, H. Lengfellner, Appl. Phys. A: Mater. Sci. Process 78, 323 (2004)

    Article  ADS  Google Scholar 

  17. A. Kyarad, H. Lengfellner, Appl. Phys. Lett. 87, 182113 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lengfellner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reitmaier, C., Walther, F. & Lengfellner, H. Transverse thermoelectric devices. Appl. Phys. A 99, 717–722 (2010). https://doi.org/10.1007/s00339-010-5742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5742-9

Keywords

Navigation