Skip to main content

Advertisement

Log in

Ultrafast solid–liquid–vapor phase change of a gold film induced by pico- to femtosecond lasers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Melting, vaporization and resolidification processes of thin gold film irradiated by a femtosecond pulse laser are studied numerically. The nonequilibrium heat transfer in electrons and lattice is described using a two-temperature model. The solid–liquid interfacial velocity, as well as elevated melting temperature and depressed solidification temperature, is obtained by considering the interfacial energy balance and nucleation dynamics. An iterative procedure based on energy balance and gas kinetics law to track the location of liquid–vapor interface is utilized to obtain the material removal by vaporization. The effect of surface heat loss by thermal radiation was discussed. The influences of laser fluence and duration on the evaporation process are studied. Results show that higher laser fluence and shorter laser pulse width lead to higher interfacial temperature, deeper melting and ablation depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.X. Wang, V. Prasad, Microscale heat and mass transfer and non-equilibrium phase change in rapid solidification. Mater. Sci. Eng. A 292(2), 142–148 (2000)

    Article  Google Scholar 

  2. J. Hohlfeld, S.S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, E. Matthias, Electron and lattice dynamics following optical excitation of metals. Chem. Phys. 251(1–3), 237–258 (2000)

    Article  Google Scholar 

  3. R.H.M. Groeneveld, R. Sprik, A. Lagendijk, Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au. Phys. Rev. B 51(17), 11433–11445 (1995)

    Article  ADS  Google Scholar 

  4. H. Furukawa, M. Hashida, Simulation on femto-second laser ablation. Appl. Surf. Sci. 197–198, 114–117 (2002)

    Article  Google Scholar 

  5. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara, Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser. Appl. Phys. A, Mater. Sci. Process. 69(7), S359–S366 (1999)

    Article  Google Scholar 

  6. P.B. Corkum, F. Brunel, N.K. Sherman, T. Srinivasan-Rao, Thermal response of metals to ultrashort-pulse laser excitation. Phys. Rev. Lett. 61(25), 2886–2889 (1988)

    Article  ADS  Google Scholar 

  7. B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B, Condens. Matter Mater. Phys. 65(21), 2143031–21430311 (2002)

    Google Scholar 

  8. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultra-short laser pulses. Sov. Phys. JETP 39(2), 375–377 (1974)

    ADS  Google Scholar 

  9. T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during short-pulse laser heating of metals. J. Heat Transf. ASME 115(4), 835–841 (1993)

    Article  Google Scholar 

  10. D.Y. Tzou, Macro- to Microscale Heat Transfer (Taylor & Francis, Washington, 1997)

    Google Scholar 

  11. D.Y. Tzou, Computational techniques for Microscale heat transfer, in Handbook of Numerical Heat Transfer, 2nd edn., ed. by W.J. Minkowycz, E.M. Sparrow, J.Y. Murthy (Wiley, Hoboken, 2006)

    Google Scholar 

  12. L. Jiang, H.L. Tsai, Improved two-temperature model and its application in ultrashort laser heating of metal films. J. Heat Transf. 127(10), 1167–1173 (2005)

    Article  Google Scholar 

  13. J.K. Chen, D.Y. Tzou, J.E. Beraun, A semiclassical two-temperature model for ultrafast laser heating. Int. J. Heat Mass Transf. 49(1–2), 307–316 (2006)

    Article  Google Scholar 

  14. D. Von Der Linde, N. Fabricius, B. Danielzik, T. Bonkhofer, Solid phase superheating during picosecond laser melting of gallium arsenide, in Materials Research Society Symposia Proceedings, vol. 74 (1987), pp. 103–108

  15. Y. Zhang, J.K. Chen, An interfacial tracking method for ultrashort pulse laser melting and resolidification of a thin metal film. J. Heat Transf. 130(6), 0624011–06240110 (2008)

    Article  Google Scholar 

  16. Y. Zhang, J.K. Chen, Melting and resolidification of gold film irradiated by nano- to femtosecond lasers. Appl. Phys. A, Mater. Sci. Process. 88(2), 289–297 (2007)

    Article  ADS  Google Scholar 

  17. J.K. Chen, W.P. Latham, J.E. Beraun, The role of electron–phonon coupling in ultrafast laser heating. J. Laser Appl. 17(1), 63–68 (2005)

    Article  Google Scholar 

  18. Y. Shi, Y. Zhang, C. Konrad, Solid–liquid–vapor phase change of a subcooled metal powder particle subjected to nanosecond laser heating. Nanoscale Microscale Thermophys. Eng. 11(3–4), 301–318 (2007)

    Article  Google Scholar 

  19. I.H. Chowdhury, X. Xu, Heat transfer in femtosecond laser processing of metal. Numer. Heat Transf., Part A, Appl. 44(3), 219–232 (2003)

    Article  Google Scholar 

  20. S.I. Anisimov, B. Rethfeld, Theory of ultrashort laser pulse interaction with a metal, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 3093 (1997), pp. 192–203

  21. L.-S. Kuo, T. Qiu, Microscale energy transfer during picosecond laser melting of metal films, in ASME National Heat Transfer Conference, vol. 323 (1996), pp. 149–157

  22. Z. Lin, L.V. Zhigilei, V. Celli, Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium. Phys. Rev. B, Condens. Matter Mater. Phys. 77(7), 075133 (2008)

    ADS  Google Scholar 

  23. S.S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, The role of electron–phonon coupling in femtosecond laser damage of metals. Appl. Phys. A, Mater. Sci. Process. 69(7), S99–S107 (1999)

    Article  Google Scholar 

  24. P.G. Klemens, R.K. Williams, Thermal conductivity of metals and alloys. Inter. Met. Rev. 31(5), 197–215 (1986)

    Google Scholar 

  25. A. Faghri, Y. Zhang, Transport Phenomena in Multiphase Systems (Elsevier, Burlington, 2006)

    Google Scholar 

  26. X. Xu, G. Chen, K.H. Song, Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel. Int. J. Heat Mass Transf. 42(8), 1371–1382 (1999)

    Article  Google Scholar 

  27. N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd edn. (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  28. I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, W. Lauterborn, Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids 13(10), 2805–2819 (2001)

    Article  ADS  Google Scholar 

  29. S. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor & Francis, London, 1980)

    MATH  Google Scholar 

  30. R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 4th edn. (Taylor & Francis, New York, 2002)

    Google Scholar 

  31. I. Barin, Thermochemical Data of Pure Substance, Part I (VCH, New York, 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Zhang, Y. & Chen, J.K. Ultrafast solid–liquid–vapor phase change of a gold film induced by pico- to femtosecond lasers. Appl. Phys. A 95, 643–653 (2009). https://doi.org/10.1007/s00339-009-5156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5156-8

PACS

Navigation