Skip to main content
Log in

Quantitative analysis of charge-carrier trapping in organic thin-film transistors from transfer characteristics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A dynamic method for quantifying the amount and mechanism of trapping in organic field effect transistors (OFETs) is proposed. It exploits transfer characteristics acquired upon application of a triangular waveform gate sweep V G. The analysis of the transfer characteristics at the turning point V G=−V max between forward and backward gate sweeps, viz. around the maximum gate voltage V max applied, provides a differential slope Δm which depends exclusively on trapping. Upon a systematic change of V max it is possible to extract the initial threshold voltage, equivalent to one of the observables of conventional stress measurements, and assess the mechanism of trapping via the functional dependence on the current. The analysis of the differential logarithmic derivative at the turning point yields the parameters of trapping, as the exponent β and the time scale of trapping τ. In the case of an ultra-thin pentacene OFET we extract β=1 and τ=102–103 s, in agreement with an exponential distribution of traps. The analysis of the hysteresis parameter Δm is completely general and explores time scales much shorter than those involved in bias stress measurements, thus avoiding irreversible damage to the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G.J. Mathijssen, M. Cölle, H. Gomes, E.C.P. Smits, B. De Boer, I. McCulloch, P.A. Bobbert, D.M. de Leeuw, Adv. Mater. 19, 2785 (2007)

    Article  Google Scholar 

  2. H.L. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D.M. de Leeuw, T. Muck, J. Geurts, L.W. Molenkamp, V. Wagner, Appl. Phys. Lett. 84, 3184 (2004)

    Article  ADS  Google Scholar 

  3. P. Stallinga, H.L. Gomes, F. Biscarini, M. Murgia, D.M. de Leeuw, J. Appl. Phys. 96, 5277 (2006)

    Article  ADS  Google Scholar 

  4. G. Goldmann, D.J. Gundlach, B. Batlogg, Appl. Phys. Lett. 88, 0635901 (2006)

    Article  Google Scholar 

  5. G. Gu, M.G. Kane, Appl. Phys. Lett. 92, 053305 (2008)

    Article  ADS  Google Scholar 

  6. F.L. Kalb, K. Mattenberger, B. Batlogg, Phys. Rev. B 78, 035334 (2008)

    Article  ADS  Google Scholar 

  7. A. Salleo, F. Endicott, R.A. Street, Appl. Phys. Lett. 86, 263505 (2005)

    Article  ADS  Google Scholar 

  8. M. Voigt, J. Pflaum, M. Sokolowski, Phys. Status Solidi A 205, 449 (2008)

    Article  ADS  Google Scholar 

  9. L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, R.H. Friend, Nature 434, 194 (2005)

    Article  ADS  Google Scholar 

  10. C. Goldmann, C. Krellner, K.P. Pernstich, S. Haas, D.J. Gundlach, B. Batlogg, J. Appl. Phys. 99, 034507 (2006)

    Article  ADS  Google Scholar 

  11. G. Gu, M.G. Kane, J.E. Doty, A.H. Firester, Appl. Phys. Lett. 87, 243512 (2005)

    Article  ADS  Google Scholar 

  12. H.L. Gomes, P. Stallinga, M. Colle, F. Biscarini, D.M. de Leeuw, J. Non-Cryst. Solids 352, 1761 (2006)

    Article  ADS  Google Scholar 

  13. A. Salleo, R.A. Street, Phys. Rev. B 70, 235324 (2004)

    Article  ADS  Google Scholar 

  14. R.A. Street, A. Salleo, M.L. Chabinyc, Phys. Rev. B 68, 085316 (2003)

    Article  ADS  Google Scholar 

  15. R.B. Wehrspohn, S.C. Deane, I.D. French, M.J. Powell, J. Non-Cryst. Solids 266–269, 459 (2000)

    Article  ADS  Google Scholar 

  16. R.B. Wehrspohn, S.C. Deane, I.D. French, I. Gale, J. Hewett, M.J. Powell, J. Robertson, J. Appl. Phys. 87, 144 (2000)

    Article  ADS  Google Scholar 

  17. Y.F. Chen, S.F. Huang, Phys. Rev. B 44, 13775 (1991)

    Article  ADS  Google Scholar 

  18. M.C.J.M. Vissenberger, M. Matters, Phys. Rev. B 57, 12964 (1998)

    Article  ADS  Google Scholar 

  19. W.B. Jackson, J.M. Marshall, M.D. Moyer, Phys. Rev. B 39, 1164 (1989)

    Article  ADS  Google Scholar 

  20. P. Stoliar, R. Kshirsagar, M. Massi, P. Annibale, C. Albonetti, D.M. de Leeuw, F. Biscarini, J. Am. Chem. Soc. 129, 6477 (2007)

    Article  Google Scholar 

  21. F. Dinelli, M. Murgia, J.F. Moulin, M. Cavallini, P. Levy, F. Biscarini, D.M. de Leeuw, Phys. Rev. Lett. 92, 116802 (2004)

    Article  ADS  Google Scholar 

  22. R. Ruiz, A. Papadimitratos, A.C. Mayer, G.G. Malliaras, Adv. Mater. 17, 1795 (2005)

    Article  Google Scholar 

  23. F. Biscarini, P. Samorì, O. Greco, R. Zamboni, Phys. Rev. Lett. 78, 2389 (1997)

    Article  ADS  Google Scholar 

  24. R. Ruiz, B. Nickel, N. Koch, G. Scoles, L.C. Feldman, R.F. Haglund, A. Kahn, F. Family, Phys. Rev. Lett. 91, 136102 (2003)

    Article  ADS  Google Scholar 

  25. P. Annibale, C. Albonetti, P. Stoliar, F. Biscarini, J. Phys. Chem. A 111, 12854 (2007)

    Article  Google Scholar 

  26. T. Miyadera, S.D. Wang, T. Minari, T. Tsukagoshi, Y. Aoyagi, Appl. Phys. Lett. 93, 033304 (2008)

    Article  ADS  Google Scholar 

  27. E. Bystrenova, M. Jelitai, I. Tonazzini, A. Lazar, M. Huth, P. Stoliar, C. Dionigi, M.G. Cacace, B. Nickel, E. Madarasz, F. Biscarini, Adv. Funct. Mater. 18, 1751 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Biscarini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Angelo, P., Stoliar, P., Cramer, T. et al. Quantitative analysis of charge-carrier trapping in organic thin-film transistors from transfer characteristics. Appl. Phys. A 95, 55–60 (2009). https://doi.org/10.1007/s00339-008-4996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4996-y

PACS

Navigation