Skip to main content
Log in

Formation of linear momentum in a rod during a laser pulse–matter interaction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, we developed an optodynamic experimental technique that makes it possible to measure the linear momentum obtained by a metal target sample in the shape of a rod during a nanosecond laser pulse interaction in the ablative regime. The height of the rod’s rear end axial step-like displacement, caused by the first reflection of the laser-generated ultrasonic wave, is proportional to the linear momentum acquired by the rod. In comparison with commonly used ballistic methods, we can determine the acquired momentum on a much shorter time scale corresponding to the wave transition time, from the front to the rear end of the rod. Using this method we investigated the ambient air pressure dependence on the formation of linear momentum over a laser intensity range, from the ablation threshold to values about ten times higher. Steel rods of various diameters were used to demonstrate the effect of an expanding blast wave which delivers additional momentum to the target, when the laser beam on the target surface is smaller than the target itself. The typical value of the acquired target momentum is on the order of μN s and 10 μN s/J for the momentum coupling coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.P. Boody, J. Badziak, H.A. Eckel, S. Gammino, J. Krása, L. Láska, A. Mezzasalma, A.J. Pakhomov, P. Parys, M. Pfeifer, K. Rohlena, W. Schall, L. Torrisi, J. Wołowski, Radiat. Eff. Defects Solids 160, 525 (2005)

    Article  ADS  Google Scholar 

  2. A.V. Pakhomov, D.A. Gregory, AIAA J. 38, 725 (2000)

    Article  ADS  Google Scholar 

  3. J.P. Romain, E. Auroux, J. Appl. Phys. 82, 1367 (1997)

    Article  ADS  Google Scholar 

  4. M. Zhou, Y.K. Zhang, L. Cai, Appl. Phys. A 74, 475 (2002)

    Article  ADS  Google Scholar 

  5. V. Menezes, K. Takayama, T. Ohki, J. Gopalan, Appl. Phys. Lett. 87, 163504 (2005)

    Article  ADS  Google Scholar 

  6. Y. Pan, C. Rossignol, B. Audoin, Appl. Phys. Lett. 82, 4379 (2003)

    Article  ADS  Google Scholar 

  7. C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, T. Lippert, Appl. Surf. Sci. 252, 4838 (2006)

    Article  ADS  Google Scholar 

  8. A.N. Pirri, R. Schlier, D. Northam, Appl. Phys. Lett. 21, 79 (1972)

    Article  ADS  Google Scholar 

  9. A.N. Chumakov, A.M. Petrenko, N.A. Bosak, Quantum Electron. 34, 948 (2004)

    Article  Google Scholar 

  10. Z.Y. Zheng, J. Zhang, X. Lu, Z.Q. Hao, X.H. Yuan, Z.H. Wang, Z.Y. Wei, Appl. Phys. A 83, 329 (2006)

    Article  ADS  Google Scholar 

  11. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 775 (1990)

    Article  ADS  Google Scholar 

  12. A.V. Pakhomov, J. Lin, R. Tan, AIAA J. 44, 136 (2006)

    Article  ADS  Google Scholar 

  13. T. Požar, J. Možina, Appl. Phys. A 91, 315 (2008)

    Article  ADS  Google Scholar 

  14. K.F. Graff, Wave Motion in Elastic Solids (Dover, New York, 1991)

    Google Scholar 

  15. H. Kolsky, Stress Waves in Solids (Dover, New York, 1963)

    Google Scholar 

  16. J. Vollmann, J. Bryner, L. Aebi, J. Dual, in 2006 IEEE Ultrasonics Symposium (2006), p. 792

  17. A.V. Pakhomov, D.A. Gregory, M.S. Thompson, AIAA J. 40, 947 (2002)

    ADS  Google Scholar 

  18. C.R. Phipps, T.P. Turner, R.F. Harrison, G.W. York, W.Z. Osborne, G.K. Anderson, X.F. Corlis, L.C. Haynes, H.S. Steele, K.C. Spicochi, T.R. King, J. Appl. Phys. 64, 1083 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Požar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Požar, T., Petkovšek, R. & Možina, J. Formation of linear momentum in a rod during a laser pulse–matter interaction. Appl. Phys. A 92, 891–895 (2008). https://doi.org/10.1007/s00339-008-4569-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4569-0

PACS

Navigation