Skip to main content
Log in

A numerical study of characteristic temperature of short-cavity 1.3-μm AlGaInAs/InP MQW lasers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Optical properties of a 1.3-μm AlGaInAs/InP strained multiple quantum-well structure with an AlInAs electron stopper layer, which is located between the active region and the p-type graded-index separate confinement heterostructure layer, are studied numerically with a LASTIP simulation program. Specifically, the effect of the electron stopper layer on the characteristic temperature and the temperature dependence of the slope efficiency are investigated. Various physical parameters at different operating temperatures are adjusted so that the threshold currents of the simulated laser structure can be matched to the experimental results of an identical laser structure fabricated by Selmic et al. The simulation results suggest that, with the use of a p-type Al0.5In0.5As electron stopper layer and a strain-compensated active region consisting of Al0.175Ga0.095In0.73As (6 nm)/Al0.32Ga0.2In0.48As (10 nm), a characteristic temperature as high as 108.7 K can be achieved for a 250-μm-long AlGaInAs/InP laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sweeney SJ, Higashi T, Adams AR, Uchida T, Fujii T (1998) Electron. Lett. 34:2130

    Article  ADS  Google Scholar 

  2. Piprek J, Abraham P, Bowers JE (1999) IEEE J. Sel. Top. Quantum Electron. 5:643

    Article  ADS  Google Scholar 

  3. Kondow M, Uomi K, Niwa A, Kitatani T, Watahiki S, Yazawa Y (1996) Jpn. J. Appl. Phys. 35:1273

    Article  ADS  Google Scholar 

  4. Dumitras G, Riechert H (2003) J. Appl. Phys. 94:3955

    Article  ADS  Google Scholar 

  5. Krost A, Böhrer J, Dadgar A, Schnabel RF, Bimberg D, Hansmann S, Burkhard H (1995) Appl. Phys. Lett. 67:3325

    Article  ADS  Google Scholar 

  6. Zah CE, Bhat R, Pathak BN, Favire F, Lin W, Wang MC, Andreadakis NC, Hwang DM, Koza MA, Lee TP, Wang Z, Darby D, Flanders D, Hsieh JJ (1994) IEEE J. Quantum Electron. QE-30:511

    ADS  Google Scholar 

  7. Song JD, Yu JS, Kim JM, Bae SJ, Lee YT (2002) Appl. Phys. Lett. 80:4650

    Article  ADS  Google Scholar 

  8. Li J, Hohl-AbiChedid A, Rice AK, Qian Y (2003) Electron. Lett. 39:289

    Article  ADS  Google Scholar 

  9. Pan JW, Chen MH, Chyi JI, Shih TT (1998) IEEE Photon. Tech. Lett. 10:1700

    Article  ADS  Google Scholar 

  10. Takemasa K, Munakata T, Kobayashi M, Wada H, Kamijoh T (1998) Electron. Lett. 34:1231

    Article  ADS  Google Scholar 

  11. Selmic SR, Chou TM, Sih JP, Kirk JB, Mantie A, Butler JK, Bour D, Evans GA (2001) IEEE J. Sel. Top. Quantum Electron. 7:340

    Article  ADS  Google Scholar 

  12. Minch J, Park SH, Keating T, Chuang SL (1999) IEEE J. Quantum Electron. QE-35:771

    Article  ADS  Google Scholar 

  13. Ishikawa T, Bowers JE (1994) IEEE J. Quantum Electron. QE-30:562

    Article  ADS  Google Scholar 

  14. Piprek J, White JK, SpringThorpe AJ (2002) IEEE J. Quantum Electron. QE-38:1253

    Article  ADS  Google Scholar 

  15. Seki S, Lui WW, Yokoyama K (1995) Appl. Phys. Lett. 66:3093

    Article  ADS  Google Scholar 

  16. LASTIP user’s manual, ver. 2004.08, Crosslight Inc. Software, Canada: available online at http://www.crosslight.ca

  17. Yoshida Y, Watanabe H, Shibata K, Takemoto A, Higuchi H (1999) IEEE J. Quantum Electron. QE-35:1332

    Article  ADS  Google Scholar 

  18. Yoshida Y, Watanabe H, Shibata K, Takemoto A, Higuchi H (1998) IEEE J. Quantum Electron. QE-34:1257

    Article  ADS  Google Scholar 

  19. Takemasa K, Munakata T, Kobayashi M, Wada H (1998) IEEE Photon. Tech. Lett. 10:495

    Article  ADS  Google Scholar 

  20. Jin J, Tian D (2003) Semicond. Sci. Technol. 18:960

    Article  ADS  Google Scholar 

  21. Pan JW, Chau KG, Chyi JI, Tu YK, Liaw JW (1998) Appl. Phys. Lett. 72:2090

    Article  ADS  Google Scholar 

  22. Pan JW, Chyi JI (1996) IEEE J. Quantum Electron. QE-32:2133

    ADS  Google Scholar 

  23. Robert F, Bryce AC, Marsh JH, SpringThorpe AJ, White JK (2004) IEEE Photon. Tech. Lett. 16:374

    Article  ADS  Google Scholar 

  24. Ash RM, Robbins DJ, Thompson J (1989) Electron. Lett. 25:1530

    Article  ADS  Google Scholar 

  25. Yong JCL, Rorison JM, White IH (2002) IEEE J. Quantum Electron. QE-38:1553

    Article  ADS  Google Scholar 

  26. Lei PH, Wu MY, Lin CC, Ho WJ, Wu MC (2002) Solid-State Electron. 46:2041

    Article  ADS  Google Scholar 

  27. Matsui Y, Murai H, Arahira S, Ogawa Y, Suzuki A (1998) IEEE J. Quantum Electron. QE-34:2340

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-K. Kuo.

Additional information

PACS

42.55.Px; 73.21.Fg; 73.61.Ey; 78.20.Bh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, SW., Kuo, YK. A numerical study of characteristic temperature of short-cavity 1.3-μm AlGaInAs/InP MQW lasers. Appl. Phys. A 82, 287–292 (2006). https://doi.org/10.1007/s00339-005-3386-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3386-y

Keywords

Navigation