Skip to main content
Log in

Fabrication and Li+-intercalation properties of V2O5-TiO2 composite nanorod arrays

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A capillary-enforced template-based method has been applied to fabricate V2O5-TiO2 composite nanorod arrays via filling mixture of VOSO4 and TiOSO4 solutions into the pores of polycarbonate membrane. For comparison purposes, pure V2O5 nanorod arrays were prepared through the similar template-based method with V2O5 sol and the sol was synthesized through the V2O5-H2O2 route. The nanorods covered completely a large area and projected from the surface of ITO substrate. The addition of TiO2 to V2O5 has demonstrated to greatly affect the Li+ intercalation capacity of V2O5. For example, V2O5-TiO2 nanorod array with molar ratio V/Ti=75/25 delivered 1.5 times discharge capacity of V2O5 nanorods at a current density of 92 mA/g. Such improvement in the intercalation properties was ascribed to the change of crystallinity and possible modification in lattice structure and interaction forces between adjacent layers in V2O5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Adv. Mater. 10:725

    Article  Google Scholar 

  2. Shimizu A, Tsumura T, Inagaki M (1993) Solid State Ionics 63–65:479

    Article  Google Scholar 

  3. Portion E, Salle ALGA, Verbaere A, Piffard Y, Guyomard D (1999) Electrochim. Acta 45:197

    Article  Google Scholar 

  4. Liu P, Lee S-H, Tracy CE, Turner JA, Pitts JR, Deb SK (2003) Solid State Ionics 165:223

    Article  Google Scholar 

  5. Takahashi K, Limmer SJ, Wang Y, Cao GZ (2005) Appl. Phys. Lett. 86:31

    Google Scholar 

  6. Gu G, Schmid M, Chin P-W, Minett A, Fraysse J, Kim G-T, Roth S, Kozlov M, Munoz E, Baughman RH (2003) Nature Mater. 2:316

    Article  Google Scholar 

  7. Livage J (1991) Chem. Mater. 3:578

    Article  Google Scholar 

  8. O’Hare D (1991) In: Bruce DW, O’Hare D (ed) Inorganic Materials. John Wiley & Sons, New York, p 165

    Google Scholar 

  9. Conway BE (1999) Electrochemical Supercapacitors. Plenum, New York

    Google Scholar 

  10. Watanabe T, Ikeda Y, Ono T, Hibino M, Hosoda M, Sakai K, Kudo T (2002) Solid State Ionics 151:313

    Article  Google Scholar 

  11. Takahashi K, Limmer SJ, Wang Y, Cao GZ (2005) Jpn. J. Appl. Phys. 44B:662

    Article  Google Scholar 

  12. Takahashi K, Limmer SJ, Wang Y, Cao GZ (2004) J. Phys. Chem. B 108:9795

    Google Scholar 

  13. Takahashi K, Wang Y, Cao GZ (2005) J. Phys. Chem. B 109:48

    Article  Google Scholar 

  14. Petkov V, Trikalitis PN, Bozin ES, Billinge SJL, Vogt T, Kanatzidis MG (2002) J. Am. Chem. Soc. 124:10157

    Article  PubMed  Google Scholar 

  15. Artuso F, Bonino F, Decker F, Lourenco A, Masetti E (2002) Electrochim. Acta 47:2231

    Article  Google Scholar 

  16. Varsano F, Decker F, Masetti E, Croce F (2001) Electrochim. Acta 46:2069

    Article  Google Scholar 

  17. Owens BB, Passerini S, Smyrl WH (1999) Electrochim. Acta 45:215

    Article  Google Scholar 

  18. Özer N, Sabuncu S, Cronin J (1999) Thin Solid Films 338:201

    Article  Google Scholar 

  19. Lee KH, Cao GZ (2005) J. Phys. Chem. B 109:11880

    Article  Google Scholar 

  20. Minett MG, Owen JR (1990) J. Power Sources 32:81

    Article  ADS  Google Scholar 

  21. Fontenot CJ, Wiench JW, Pruski M, Schrader GL (2000) J. Phys. Chem. B 104:11622

    Article  Google Scholar 

  22. Cao GZ (2004) Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Imperial College Press, London, UK

    Google Scholar 

  23. Cao GZ (2004) J. Phys. Chem. B108:19921

    Article  Google Scholar 

  24. Wen TL, Zhang J, Chou TP, Limmer SJ, Cao GZ (2005) J. Sol-Gel Sci. Techn. 33:193

    Article  Google Scholar 

  25. Reed JS (1988) Introduction to Principles of Ceramic Processing. Wiley, New York

    Google Scholar 

  26. Coustier F, Passerini S, Smyrl WH (1997) Solid State Ionics 100:247

    Article  Google Scholar 

  27. Surca A, Benèiè S, Orel B, Pihlar B (1999) Electrochim. Acta 44:3075

    Article  Google Scholar 

  28. Owens BB, Smyrl WH, Xu JJ (1999) J. Power Sources 81–82:150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cao.

Additional information

PACS

81.05.Je; 82.45.Yz; 81.10.Dn; 81.20.Fw; 82.47.Aa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, K., Wang, Y., Lee, K. et al. Fabrication and Li+-intercalation properties of V2O5-TiO2 composite nanorod arrays. Appl. Phys. A 82, 27–31 (2006). https://doi.org/10.1007/s00339-005-3375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3375-1

Keywords

Navigation