Skip to main content
Log in

Growth and morphology of thin films of aromatic molecules on metals: the case of perylene

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The morphology and growth of perylene films on copper and gold surfaces have been characterized by XPS, AFM, SEM and polarization microscopy. Deposition at cryogenic temperatures leads to amorphous but homogeneous films whereas growth a room temperature results in a formation of disjointed crystalline islands. A similar morphology was observed after thawing the amorphous films which were grown before at low temperature and hence demonstrates a pronounced dewetting. Furthermore, it was found that the geometry of the resulting islands depends on the actual substrate surface which is attributed to the formation of seed layers and their influence on the subsequent film growth. The presently described dewetting and island formation appears to be a quite general phenomenon of organic film growth which needs to be considered in the interpretation of spectroscopic data and STM measurements for organic thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pope M, Swenberg CE (1999) Electronic Processes in Organic Crystals and Polymers. Oxford University Press, New York

    Google Scholar 

  2. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger A (1977) J. Chem. Soc. Chem. Comm. 16:578

    Article  Google Scholar 

  3. Tsumura A, Koezuka K, Ando T (1986) Appl. Phys. Lett. 49:1210

    Article  ADS  Google Scholar 

  4. Tang CW, van Slyke SA (1987) Appl. Phys. Lett. 51:913

    Article  ADS  Google Scholar 

  5. Dimitrakopoulos CD, Malenfant PRL (2002) Adv. Mater. 14:99

    Article  Google Scholar 

  6. Clemens W, Fix W, Ficker J, Knobloich A, Ullmann A (2004) J. Mater. Res. 19:1963

    Article  ADS  Google Scholar 

  7. Sheats JR (2004) J. Mater. Res. 19:1974

    Article  ADS  Google Scholar 

  8. Karl N (2003) Synthetic Met. 133–134:649

    Article  Google Scholar 

  9. Karl N (2001) In: Frachioni R, Grosso G (eds) Organic Electronic Materials. Springer, Berlin, p 283

    Chapter  Google Scholar 

  10. de Boer RWI, Gershenson ME, Morpurgo A, Podzorov V (2004) Phys. Stat. Solidi 201:1302

    Article  ADS  Google Scholar 

  11. Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL, Someya T, Gershenson ME, Rogers JA (2004) Science 303:1644

    Article  ADS  Google Scholar 

  12. Hooks DE, Fritz T, Ward MD (2001) Adv. Mater. 13:227

    Article  Google Scholar 

  13. Seidel C, Ellerbrake R, Gross L, Fuchs H (2001) Phys. Rev. B 64:195418

    Article  ADS  Google Scholar 

  14. Barlow SM, Raval R (2003) Surf. Sci. Rep. 50:201

    Article  ADS  Google Scholar 

  15. Forrest SR (1997) Chem. Rev. 97:1793

    Article  Google Scholar 

  16. Oja V, Suuberg EM (1998) J. Chem. Eng. Data 43:486

    Article  Google Scholar 

  17. Witte G, Wöll C (2004) J. Mater. Res. 19:1889

    Article  ADS  Google Scholar 

  18. France CB, Schroeder PG, Forsythe JC, Parkinson BA (2003) Langmuir 19:1274

    Article  Google Scholar 

  19. Karl N (1985) In: Madelung O, Schulz M, Weiss H (ed) Landolt–Börnstein: New Series, vol 17i. Springer-Verlag, Heidelberg

  20. Lukas S, Vollmer S, Witte G, Wöll C (2001) J. Chem. Phys. 114:10123

    Article  ADS  Google Scholar 

  21. Hayashi T, Yamashita A, Maruno T, Fölsch S, Konami H, Hatano M (1995) J. Cryst. Growth 156:245

    Article  ADS  Google Scholar 

  22. Osso JO, Schreiber F, Kruppa V, Dosch H, Garriga M, Alonso AI, Cerdeira F (2002) Adv. Funct. Mater. 12:455

    Article  Google Scholar 

  23. Lukas S, Witte G, Wöll C (2002) Phys. Rev. Lett. 88:028301

    Article  ADS  Google Scholar 

  24. Söhnchen S, Lukas S, Witte G (2004) J. Chem. Phys. 121:525

    Article  ADS  Google Scholar 

  25. Chen Q, Rada T, McDowall A, Richardson NV (2002) Chem. Mater. 14:743

    Article  Google Scholar 

  26. Chen Q, McDowall A, Richardson NV (2003) Chem. Mater. 15:4113

    Article  Google Scholar 

  27. Beernink G, Strunskus T, Witte G, Wöll C (2004) Appl. Phys. Lett. 85:398

    Article  ADS  Google Scholar 

  28. Hänel K, Söhnchen S, Lukas S, Beernink G, Birkner A, Strunskus T, Witte G, Wöll C (2004) J. Mater. Res. 19:2049

    Article  ADS  Google Scholar 

  29. Söhnchen S, Hänel K, Birkner A, Witte G, Wöll C, Chem. Mater. (in press)

  30. Nather C, Bock H, Havlas Z, Hauck T (1998) Organometallics 17:47076

    Article  Google Scholar 

  31. Tanaka J (1963) Bull. Chem. Soc. Jpn. 36:1237

    Article  Google Scholar 

  32. Loepp G, Vollmer S, Witte G, Wöll C (1999) Langmuir 15:3767

    Article  Google Scholar 

  33. Voigt M, Dorsfeld S, Volz A, Sokolowski M (2003) Phys. Rev. Lett. 91:026103

    Article  ADS  Google Scholar 

  34. The mean free paths were calculated by using the Gries formula in the program electron inelastic-mean-free-path v.1.1 provided by the National Institute of Standards and Technology, NIST (USA)

  35. Hung LS, Chen CH (2002) Mat. Sci. Eng. R 39:143

    Article  Google Scholar 

  36. Nickel B, Barabash R, Ruiz R, Koch N, Kahn A, Feldman LC, Haglund RF, Scoles G (2004) Phys. Rev. B 70:125401

    Article  ADS  Google Scholar 

  37. Kang JH, Zhu XY (2003) Appl. Phys. Lett. 82:3248

    Article  ADS  Google Scholar 

  38. Stöhr M, Gabriel M, Möller R (2002) Europhys. Lett. 59:423

    Article  ADS  Google Scholar 

  39. Stöhr M, Gabriel M, Möller R (2002) Surf. Sci. 507–510:330

    Article  ADS  Google Scholar 

  40. Krause B, Dürr AC, Schreiber F, Dosch H, Seeck OH (2003) J. Chem. Phys. 119:3429

    Article  ADS  Google Scholar 

  41. Hoshi H, Fang S, Maruyama Y (1993) J. Appl. Phys. 73:3111

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Witte.

Additional information

PACS

68.37.-d; 68.37.Ps; 68.55.Jk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witte, G., Hänel, K., Söhnchen, S. et al. Growth and morphology of thin films of aromatic molecules on metals: the case of perylene. Appl. Phys. A 82, 447–455 (2006). https://doi.org/10.1007/s00339-005-3367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3367-1

Keywords

Navigation