Skip to main content
Log in

Field-effect transistor with recombinant potassium channels: fast and slow response by electrical and chemical interactions

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrical interfacing of semiconductor devices with ion channels is the basis for a development of neuroelectronic systems and of cell-based biospecific electronic sensors. To elucidate the mechanism of cell–chip coupling, we studied the voltage-gated potassium channel Kv1.3 in HEK 293 cells on field-effect transistors in silicon with a metal-free gate of silicon dioxide. Upon intracellular depolarization there is a positive change of the effective extracellular voltage on the transistor with an amplitude that correlates with the gating of Kv1.3 channels, but with a dynamics that is far slower than channel gating. After repolarization there is a fast negative change of the transistor signal followed by a slow relaxation dynamics without any membrane current. To rationalize the involved transistor response, we propose a concept that combines the electrodiffusion of ions in the cell–chip junction with selective ion binding in the electrical double layer of silicon dioxide. The model implies (i) an electrical charging and discharging of the cell–chip capacitance within a microsecond, (ii) a changing K+ concentration in the cell–chip junction within a millisecond and (iii) a changing adsorption of K+ and Na+ ions within tens of milliseconds. The total transistor signal is a superposition of the changed electrical potential in the extracellular space between cell and chip and of the changed surface potential at the chip surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.P. Hamill, A. Marty, E. Neher, B. Sakmann, F.J. Sigworth: Pflugers Arch. 391, 85 (1981)

    Article  Google Scholar 

  2. K.G. Klemic, J.F. Klemic, M.A. Reed, F.J. Sigworth: Biosens. Bioelectron. 17, 597 (2002)

    Article  Google Scholar 

  3. N. Fertig, R.H. Blick, J.C. Behrends: Biophys. J. 82, 3056 (2002)

    Article  ADS  Google Scholar 

  4. A. Stett, C. Burkhardt, U. Weber, P. van Stiphout, T. Knott: Receptor Channel 9, 59 (2003)

    Google Scholar 

  5. C. Schmidt, M. Mayer, H. Vogel: Angew. Chem. Int. Ed. 39, 3137 (2000)

    Article  Google Scholar 

  6. P. Fromherz: Eur. Biophys. J. 28, 254 (1999)

    Article  Google Scholar 

  7. B. Straub, E. Meyer, P. Fromherz: Nat. Biotech. 19, 121 (2001)

    Article  Google Scholar 

  8. B. Straub: PhD Thesis, Physics Faculty, Technical University Munich (2001)

  9. P. Fromherz: in Nanoelectronics and Information Technology, ed. by R. Waser (Wiley–VCH, Berlin 2003) p. 781

  10. P. Fromherz, A. Offenhäusser, T. Vetter, J. Weis: Science 252, 1290 (1991)

    Article  ADS  Google Scholar 

  11. R. Schätzthauer, P. Fromherz: Eur. Neurosci. J. 10, 1956 (1998)

    Article  Google Scholar 

  12. R. Weis, B. Müller, P. Fromherz: Phys. Rev. Lett. 76, 327 (1996)

    Article  ADS  Google Scholar 

  13. V. Kiessling, B. Müller, P. Fromherz: Langmuir 16, 3517 (2000)

    Article  Google Scholar 

  14. M. Ulbrich, P. Fromherz: Adv. Mater. 13, 344 (2001)

    Article  Google Scholar 

  15. G. Zeck, P. Fromherz: Proc. Natl. Acad. Sci. USA 98, 10 457 (2001)

    Article  Google Scholar 

  16. P. Bonifazi, P. Fromherz: Adv. Mater. 14, 1190 (2002)

    Article  Google Scholar 

  17. G. Zhu, Y. Zhang, H. Xu, C. Jiang: J. Neurosci. Methods 81, 73 (1998)

    Article  Google Scholar 

  18. R. Swanson, J. Marshall, J.S. Smith, J.B. Williams, M.B. Boyle, K. Folander, C.J. Luneau, J. Antanavage, C. Oliva, S.A. Buhrow, C. Bennett, R.B. Stein, L.K. Kacmarek: Neuron 4, 929 (1990)

    Article  Google Scholar 

  19. J. Kupper: Eur. J. Neurosci. 10, 3908 (1998)

    Article  Google Scholar 

  20. S. Rothman, W.M. Cowan: J. Comput. Neurol. 195, 141 (1981)

    Article  Google Scholar 

  21. D. Braun, P. Fromherz: Phys. Rev. Lett. 81, 5241 (1998)

    Article  ADS  Google Scholar 

  22. A. Lambacher, P. Fromherz: J. Opt. Soc. Am. B 19, 1435 (2002)

    Article  ADS  Google Scholar 

  23. D. Braun, P. Fromherz: Phys. Rev. Lett. 86, 2905 (2001)

    Article  ADS  Google Scholar 

  24. D. Braun, P. Fromherz: Biophys. J. 87, 1351 (2004)

    Article  ADS  Google Scholar 

  25. R. Gleixner: PhD Thesis, Physics Faculty, Technical University Munich (2004)

  26. P. Bergveld: IEEE Trans. Biomed. Eng. 17, 70 (1970)

    Article  Google Scholar 

  27. P. Bergveld, A. Sibbald: Analytical and Biomedical Applications of Ion-selective Field-effect Transistors (Elsevier, Amsterdam 1988)

  28. C.D. Fung, P.W. Cheung, W.H. Ko: IEEE Trans. Electron Devices 33, 8 (1986)

    Article  ADS  Google Scholar 

  29. S.C. Chen, Y.-K. Su, J.S. Tzeng: J. Phys. D 19, 1951 (1986)

    Article  ADS  Google Scholar 

  30. B. Hajji, P. Temple-Boyer, J. Launay, T. do Conto, A. Martinez: Microelectron. Reliab. 40, 783 (2000)

    Article  Google Scholar 

  31. G. Zeck, P. Fromherz: Langmuir 19, 1580 (2003)

    Article  Google Scholar 

  32. R. Weis, P. Fromherz: Phys. Rev. E 55, 877 (1997)

    Article  ADS  Google Scholar 

  33. P. Vanysek: in The Handbook of Chemistry and Physics, 82nd edn., ed. by D.R. Lide (CRC, Boca Raton, FL 2001–2002)

  34. O.N. Kovbasnjuk, P.M. Bungay, K.R. Spring: J. Membrane Biol. 175, 9 (2000)

    Article  Google Scholar 

  35. E.J.W. Verwey, J.T.G. Overbeek: Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam 1948)

  36. O. Stern: Z. Elektrochem. 30, 508 (1924)

    Google Scholar 

  37. M. Borkovec, B. Jönsson, G.J.M. Koper: in Surface and Colloid Science, Vol. 16, ed. by E. Matijevic (Kluwer, New York 2001) p. 99

  38. D.E. Yates, S. Levine, T.W. Healy: J. Chem. Soc. Faraday Trans. I 70, 1807 (1974)

    Article  Google Scholar 

  39. L. Bousse, N.F. De Rooij, P. Bergveld: Surf. Sci. 135, 479 (1983)

    Article  ADS  Google Scholar 

  40. P.J. Scales, F. Grieser, T.W. Healy, L.R. White, D.Y.C. Chan: Langmuir 8, 965 (1992)

    Article  Google Scholar 

  41. P. Woias, L. Meixner, D. Amandi, M. Schönberger: Sens. Actuators B 2425, 211 (1995)

    Google Scholar 

  42. M. Risken: The Fokker–Planck Equation (Springer, Berlin 1984)

  43. N. Quian, T.J. Sejnowsky: Biol. Cybern. 62, 1 (1989)

    Article  Google Scholar 

  44. J. Crank: Mathematics of Diffusion, 2nd edn. (Oxford University Press 1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fromherz.

Additional information

PACS

73.40.Mr; 82.45.Vp; 85.30.Tv; 87.16.Uv; 87.19.Nn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brittinger, M., Fromherz, P. Field-effect transistor with recombinant potassium channels: fast and slow response by electrical and chemical interactions. Appl. Phys. A 81, 439–447 (2005). https://doi.org/10.1007/s00339-005-3272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3272-7

Keywords

Navigation