Skip to main content
Log in

Structural dependence of nonlinear elastic properties for carbon nanotubes using a continuum analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Based on molecular mechanics coupled with the atomistic-based continuum theory, a structural mechanics approach is presented to examine the nonlinear elastic properties of carbon nanotubes (CNTs) subjected to large axial deformations. According to molecular mechanics, the interaction force between atoms is modeled using the Morse potential. The nanoscale continuum theory is established to directly incorporate the Morse potential function into the constitutive model of CNTs. In this paper, we simulate and examine the influence of CNT structures on the stress–strain response. The linear elastic property of CNTs is independent of the helicity of the hexagonal carbon lattice along the tubes, while their nonlinear elastic behavior shows a larger chirality dependence. The present theoretical approach supplies a set of very simple formulas and is able to serve as a good approximation of the mechanical properties of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.T. Lau, D. Hui: Composites Part B 33, 263 (2002)

    Article  Google Scholar 

  2. E.T. Thostenson, Z. Ren, T.W. Chou: Compos. Sci. Technol. 61, 1899 (2001)

    Article  Google Scholar 

  3. L. Vaccarini, C. Goze, L. Henrard, E. Hernandez, P. Bernier, A. Rubio: Carbon 38, 1681 (2000)

    Article  Google Scholar 

  4. J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit , L. Zuppiroli: Appl. Phys. A 69, 255 (1999)

    Article  Google Scholar 

  5. L.S. Schadler, S.C. Giannaris, P.M. Ajayan: Appl. Phys. Lett. 73, 3842 (1998)

    Article  Google Scholar 

  6. D. Qian, E.C. Dickey, R. Andrews, T. Rantell: Appl. Phys. Lett. 76, 2868 (2000)

    Article  Google Scholar 

  7. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Nature 381, 678 (1996)

    Article  Google Scholar 

  8. E.W. Wong, P.E. Sheehan, C.M. Lieber: Science 277, 1971 (1997)

    Article  Google Scholar 

  9. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff: Science 287, 637 (2000)

    Article  Google Scholar 

  10. B.I. Yakobson, C.J. Brabec, J. Bernholc: Phys. Rev. Lett. 76, 2511 (1996)

    Article  Google Scholar 

  11. B.I. Yakobson: Appl. Phys. Lett. 72, 918 (1998)

    Article  Google Scholar 

  12. M.B. Nardelli, B.I. Yakobson, J. Bernholc: Phys. Rev. B 57, R4277 (1998)

  13. K.N. Kudin, G.E. Scuseria, B.I. Yakobson: Phys. Rev. B 64, 235406 (2001)

    Article  Google Scholar 

  14. G.V. Lier, C.V. Alsenoy, V.V. Doren, P. Geerlings: Chem. Phys. Lett. 326, 181 (2000)

    Article  Google Scholar 

  15. J.P. Lu: J. Phys. Chem. Solids 58, 1649 (1997)

    Article  Google Scholar 

  16. J.P. Lu: Phys. Rev. Lett. 79, 1297 (1997)

    Article  Google Scholar 

  17. G.M. Odegard, T.S. Gates, L.M. Nicholson, K.E. Wise: Rep. NASA-2002-TM211454, NASA Langley Research Center

  18. G.M. Odegard, V.M. Harik, K.E. Wise, T.S. Gates: Rep. NASA-2001-TM211044, NASA Langley Research Center

  19. T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruff: Phys. Rev. B 65, 235430 (2002)

    Article  Google Scholar 

  20. T. Dumitricã, B.I. Yakobson: Appl. Phys. Lett. 84, 2775 (2004)

    Article  Google Scholar 

  21. T. Natsuki, M. Endo: Carbon 42, 2147 (2004)

    Article  Google Scholar 

  22. T. Natsuki, K. Tantrakan, M. Endo: Carbon 42, 39 (2004)

    Article  Google Scholar 

  23. M.S. Dresselhaus, G. Dresselhaus, R. Saito: Carbon 33, 883 (1995)

    Article  Google Scholar 

  24. R.A. Jishi, G. Dresselhaus: Phys. Rev. B 26, 4514 (1982)

    Article  Google Scholar 

  25. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy: Phys. Rev. B 58, 14013 (1998)

    Article  Google Scholar 

  26. B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie: Mater. Sci. Eng. A 334, 173 (2002)

    Article  Google Scholar 

  27. D. Srivastava, M. Menon, K. Cho: Phys. Rev. Lett. 83, 2973 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Natsuki.

Additional information

PACS

62.20.-x; 62.20.Dc; 62.25.+g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natsuki, T., Endo, M. Structural dependence of nonlinear elastic properties for carbon nanotubes using a continuum analysis. Appl. Phys. A 80, 1463–1468 (2005). https://doi.org/10.1007/s00339-004-3146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3146-4

Keywords

Navigation