Skip to main content
Log in

Pulsed laser deposition vs. matrix assisted pulsed laser evaporation for growth of biodegradable polymer thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thin films of poly (lactide-co-glycolide) (PLGA), a biodegradable polymer, were deposited on Si wafers by both conventional pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) using chloroform (CHCl3) as a matrix solvent. This research represents an initial study to investigate the deposition characteristics of each technique at comparable conditions to gain insight into the transport and degradation mechanisms of each approach. The deposited materials were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and gel permeation chromatography (GPC) with refractive index (RI) detection. While FTIR and NMR results do not show a measurable departure from the native, in sharp contrast GPC results show a significant change (up to 95%) in molecular weight for both deposition methods. This result makes it clear that it is possible to overlook substantial degradation when incomplete chemical analysis is conducted.

Optical transmission measurements of the starting MAPLE targets yielded laser penetration depths on the order of 0.362 cm and 0.209 cm for pure CHCl3 and 1 wt. % PLGA in CHCl3, respectively. Straightforward application of the Beer–Lambert law for laser energy deposition predicts a negligible temperature rise of less than 1 K at the target surface, which is in clear contradiction with ablation rates of 1.85 μm/pulse experimentally measured for polymer loaded samples. With an ablation process of this magnitude, the material ejection is likely due to contributions of nonlinear or non-homogeneous laser light absorption rather than evaporation. Severe non-uniformity of the final surface morphologies of the MAPLE films, similar to solvent wicking artifacts found in spin casting supports the spallation scenario in MAPLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.H. Wang, W. Wang, W.G. Zhang, E.T. Kang, W. Huang: Chem. Mater. 12, 2212 (2000)

    Article  Google Scholar 

  2. A.C. Edrington, A.M. Urbas, P. DeRege, C. Chen, T. Timothy, N. Hadjichristidis, M. Xeridou, L. Fetters, J.D. Joannopoulos, Y. Fink, E.L. Thomas: Adv. Mater. 13, 421 (2001)

    Article  Google Scholar 

  3. Y. Okamoto: Makromol. Chem., Macromol. Symp. 59, 82 (1992)

    Article  Google Scholar 

  4. C.X. Du, L. Ma, Y. Xu, W.L. Li: J. Appl. Polym. Sci. 66, 1405 (1997)

    Article  Google Scholar 

  5. A.L. Jenkins, O.M. Uy, G.M. Murray: Anal. Chem. 71, 373 (1999)

    Article  Google Scholar 

  6. P. Zhang, J.S. Moore: J. Polym. Sci., Part A: Polym. Chem. 38, 207 (2000)

    Article  ADS  Google Scholar 

  7. M.S. Mousa, K. Lorenz, N.S. Xu: Ultramicroscopy 79, 43 (1999)

    Article  Google Scholar 

  8. R.A. McGill, M.H. Abraham, J.W. Grate: Chemtech 24, 27 (1994)

    Google Scholar 

  9. B.R. Ringeisen, J. Callahan, P. Wu, A. Pique, B. Spargo, R.A. McGill, M. Bucaro, H. Kim, D.M. Bubb, D.B. Chrisey: Langmuir 17, 3472 (2001)

    Article  Google Scholar 

  10. A. Hickey: Respiratory Drug Delivery VI., (Hilton Head, SC: Interpharm Press Inc., 1998)

  11. D.A. Edwards, J. Hanes, G. Caponetti, J.S. Hrkach, A. Ben-Jebria, M.L. Eskew, J. Mintzes, D. Deaver, N. Lotan, R. Langer: Science 276, 1868 (1997)

    Article  Google Scholar 

  12. A. Gopferich, M.J. Alonso, R. Langer: Pharm. Res. 11, 1568 (1994)

    Article  Google Scholar 

  13. J.D. Talton, J.M. Fitz-Gerald, R.K. Singh, G. Hochhaus: Respiratory Drug Delivery VII (Hilton Head, SC: Interpharm Press, Inc., 2000) pp. 67–74

  14. X. Cui, J.F. Hetke, J.A. Wiler, D.J. Anderson, D.C. Martin: Sens. Actuators A 93, 8 (2001)

    Article  Google Scholar 

  15. K. Skrobis, D.D. Denton, A. Skrobis: Polymer Engineering and Science 30, 193 (1990)

    Article  Google Scholar 

  16. M.A. Bopp, G. Tarrach, M.A. Lieb, A.J. Meixner: J. Vac. Sci. Technol., A 15, 1423 (1997)

    Article  ADS  Google Scholar 

  17. W.L. Wu, W.E. Wallace: J. Vac. Sci. Technol., B 16, 1958 (1998)

    Article  Google Scholar 

  18. S. Sakurai, C. Furukawa, A. Okutsu, A. Miyoshi, S. Nomura: Polymer 43, 3359 (2002)

    Article  Google Scholar 

  19. T.H. Young, Y.H. Huang, L.Y. Chen: J. of Membrane Science 164, 111 (2000)

    Article  Google Scholar 

  20. See for example, T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds (Eds.): Handbook of Conducting Polymers, 2nd edn., (Dekker, New York 1996)

  21. A.J. Heeger, S.A. Kivelso, J.R. Schrieffer, W.P. Su: Rev. Mod. Phys. 60, 781 (1998)

    Article  ADS  Google Scholar 

  22. T.M. Lee, S. Mittler-Neher, D. Neher, GI Stegeman, C. Roux, M. Leclerc: Opt. Mater. 1, 65 (1992)

    Article  ADS  Google Scholar 

  23. F.F. Shi: Surf. Coat. Technol. 82, 1 (1996)

    Article  Google Scholar 

  24. P. Favia, R. d’Agostino: Surf. Coat. Technol. 98, 1102 (1998)

    Article  Google Scholar 

  25. N. Inagaki, S. Tasaka, M. Makino: J. Appl. Polym. Sci. 64, 1031 (1997)

    Article  Google Scholar 

  26. M.J. Sowa, M.E. Littau, V. Pohray, J.L. Cecchi: J. Vac. Sci. Technol. A 18, 2122 (2000)

    Article  ADS  Google Scholar 

  27. G.H. Hishmeh, T.I. Barr, A. Skylarov, S. Hardcastle: J. Vac. Sci. Technol. A 14, 1330 (1996)

    Article  ADS  Google Scholar 

  28. K. D’Almeida, J.C. Bernede, F. Ragot, A. Godoy, F.R. Diaz, S. Lefrant: J. Appl. Poly. Sci. 82, 2042 (2001)

    Article  Google Scholar 

  29. H. Biederman: J. Vac. Sci. Technol. A 18, 1642 (2000)

    Article  ADS  Google Scholar 

  30. T.R. Gengenbach, H.J. Griesser: J. Polym. Sci. 36, 985 (1998)

    Article  Google Scholar 

  31. X. Cui, J. Hetke, J.A. Wiler, D.J. Anderson, D.C. Martin: Sens. Actuators A 93, 8 (2001)

    Article  Google Scholar 

  32. A. Kiesow, A. Heilmann: Thin Solid Films 343, 338 (1999)

    Article  ADS  Google Scholar 

  33. R.K. Singh, N. Biunno, J. Narayan: Appl. Phys. Lett. 53, 1013 (1988)

    Article  ADS  Google Scholar 

  34. J.T. Cheung, H. Sankur: CRC Critical Reviews in Solid State and Materials Sciences 15, 63 (1988)

    Article  ADS  Google Scholar 

  35. J.M. Fitz-Gerald, P.D. Rack, T.A. Trottier, M. Ollinger, S.J. Pennycook, H. Gao, R.K. Singh: J. Appl. Phys. 86, 1759 (1999)

    Article  ADS  Google Scholar 

  36. J.M. Fitz-Gerald, T.A. Trottier, P.H. Holloway, R.K. Singh: Appl. Phys. Lett. 72, 1838 (1998)

    Article  ADS  Google Scholar 

  37. D.B. Chrisey, J.S. Horwitz: Thin Solid Films 206, 111 (1991)

    Article  ADS  Google Scholar 

  38. D. Lowndes, D.B. Geohegan, A.A. Puretzky, D.P. Norton, C.M. Rouleau: Science 273, 898 (1996)

    Article  ADS  Google Scholar 

  39. D.M. Bubb, M.R. Papantonakis, B. Toftmann, J.S. Horwitz, R.A. McGill, D.B. Chrisey, R.F. Haglund Jr.: J. Appl. Phys. 91, 9809 (2002)

    Article  ADS  Google Scholar 

  40. D.M. Bubb, M.R. Papantonakis, J.S. Horwitz, R.F. Haglund Jr., B. Toftmann, R.A. McGill, D.B. Chrisey: Chem. Phys. Lett. 352, 135 (2002)

    Article  ADS  Google Scholar 

  41. R.A. McGill, D.B. Chrisey: Patent, Navy case No. 78, 117 (1999)

    Google Scholar 

  42. L. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M. Zeifman: Chem. Rev. 103, 321 (2003)

    Article  Google Scholar 

  43. K. Dreisewerd: Chem. Rev. 103, 395 (2003)

    Article  Google Scholar 

  44. Y.P. Li, X.Y. Zhang, Z.H. Gu, Z.H. Zhou, W.F. Yuan, J.J. Zhou, J.H. Zhu, X.J. Gao: J. Controlled Release 71, 203 (2001)

    Article  Google Scholar 

  45. D.M. Bubb, P.K. Wu, J.S. Horwitz, J.H. Callahan, M. Galicia, A. Vertes, R.A. McGill, E.J. Houser, B.R. Ringeisen, D.B. Chrisey: J. Appl. Phys. 91, 2055 (2002)

    Article  ADS  Google Scholar 

  46. J.S. Hrkach, M.T. Peracchia, A. Domb, N. Lotan, R. Langer: Biomaterials 18, 27 (1997)

    Article  Google Scholar 

  47. S.L. Murov: Handbook of Photochemistry (Marcel Dekker, Inc., 1973)

  48. W. Schnabel: Polymer Degradation: Principles and Practical Applications (Hanser, 1982)

  49. D.M. Bubb, B. Toftmann, R.F. Haglund Jr., J.S. Horwitz, M.R. Papantonakis, R.A. McGill, P.K. Wu, D.B. Chrisey: Appl. Phys. A 74, 123 (2002)

    Article  ADS  Google Scholar 

  50. R. Srinivasan, B. Braren: Chem. Rev. 89, 1303 (1989)

    Article  Google Scholar 

  51. R. Srinivasan, B. Braren, R.W. Dreyfus: J. Appl. Phys. 61, 372 (1986)

    Article  ADS  Google Scholar 

  52. G.M. Davis, M.C. Gower: J. Appl. Phys. 61, 2090 (1987)

    Article  ADS  Google Scholar 

  53. G.B. Blanchet, S.I. Shah: Appl. Phys. Lett. 62, 1026 (1993)

    Article  ADS  Google Scholar 

  54. P.E. Dyer, D.M. Karnakis: Appl. Phys. Lett. 64, 1344 (1993)

    Article  ADS  Google Scholar 

  55. L.V. Zhigilei, B.J. Garrison: J. Appl. Phys. 88, 1281 (2000)

    Article  ADS  Google Scholar 

  56. T.E. Itina, L.V. Zhigilei, B.J. Garrison: Nucl. Instrum. Methods Phys. Res., Sect. B 180, 238 (2001)

    Article  ADS  Google Scholar 

  57. R.S. Dingus, R.J. Scammom: SPIE Proc. 1427, 45 (1991)

    Article  ADS  Google Scholar 

  58. V.Y. Kurbatov: Zh. Obshch. Kim. 18, 372 (1948)

    Google Scholar 

  59. W.T. Richards, J.H. Wallace Jr.: J. Am. Chem. Soc. 54, 2705 (1932)

    Article  Google Scholar 

  60. J.W. Willams, F. Daniels: J. Am. Chem. Soc. 46, 903 (1924)

    Article  Google Scholar 

  61. R. Cramer, R.F. Haglund Jr., F. Hillenkamp: J. Mass Spectrom. Ion Processes 169/170, 51 (1997)

  62. E. Leveugle, D. Ivanov, L.V. Zhigilei: Appl. Phys. A 79, 1643 (2004)

    ADS  Google Scholar 

  63. L.V. Zhigilei, B.J. Garrison: Appl. Phys. A 69[Suppl.], 75 (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.M. Fitz-Gerald.

Additional information

PACS

81.15.Fg; 79.20.Ds; 78.66.Qn; 42.70Jk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercado, A., Allmond, C., Hoekstra, J. et al. Pulsed laser deposition vs. matrix assisted pulsed laser evaporation for growth of biodegradable polymer thin films. Appl. Phys. A 81, 591–599 (2005). https://doi.org/10.1007/s00339-004-2994-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2994-2

Keywords

Navigation