Skip to main content
Log in

Irradiation-induced amorphization processes in nanocrystalline solids

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A theoretical model is suggested which describes irradiation-induced amorphization in nanocrystalline solids, using the rate theory approach. In the framework of the model, interfaces (grain boundaries) cause the two basic effects on irradiation-induced damage and amorphization processes in nanocrystalline solids where the volume fraction of the interfacial phase is extremely large. First, amorphization is enhanced in nanocrystalline solids, because high-density ensembles of interfaces essentially contribute to the total energy of the crystalline state and thereby provide a shift in the energetics of amorphization. Second, interfaces serve as effective sinks of irradiation-produced point defects and thereby hamper amorphization driven by defect accumulation. The competition between these effects is described by kinetic equations for densities of point defects in nanoscale grains in nanocrystalline solids under irradiation treatment. This competition is shown to be responsible for the specific behavior of irradiated nanocrystalline solids, which is different from that of their coarse-grained counterparts. The suggested model accounts for the experimental data reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Berndt, T.E. Fischer, I.A. Ovid’ko, G. Skandan, T. Tsakalakos (Eds.): Nanomaterials for Structural Applications, MRS Proc. Vol. 740 (MRS, Warrendale 2003)

  2. T. Tsakalakos, I.A. Ovid’ko, A.K. Vasudevan (Eds.): Nanostructures: Synthesis, Functional Properties and Applications, NATO Science Ser. (Kluwer, Dordrecht 2003)

  3. I.A. Ovid’ko, C.S. Pande, R. Krishnamoorti, E. Lavernia, G. Skandan (Eds.): Mechanical Properties of Nanostructured Materials and Nanocomposites, MRS Symp. Proc., Vol. 791 (MRS, Warrendale 2004)

  4. R.D. Goldberg, J.S. Williams, R.G. Elliman: Phys. Rev. Lett. 82, 771 (1999)

    Article  ADS  Google Scholar 

  5. E. Glaser, T. Fehlhaber, B. Breeger: Nucl. Instr. Meth. Phys. Res. B 148, 426 (1999)

    Article  ADS  Google Scholar 

  6. A. Plewnia, B. Heinz, P. Ziemann: Nucl. Instr. Meth. Phys. Res. B 148, 901 (1999)

    Article  ADS  Google Scholar 

  7. S.X. Wang, G.R. Lumpkin, L.M. Wang, R.C. Ewing: Nucl. Instr. Meth. Phys. Res. B 166167, 293 (2000)

    Google Scholar 

  8. T. Aruga, Y. Katano, T. Ohmichi, S. Okayashi, Y. Kazumata: Nucl. Instr. Meth. Phys. Res. B 166167, 913 (2000)

    Google Scholar 

  9. S.X. Wang, L.M. Wang, R.C. Ewing: Nucl. Instr. Meth. Phys. Res.B 175177, 615 (2001)

    Google Scholar 

  10. J.K.N. Lindner, M. Haberlen, M. Schmid, W. Attenberger, B. Stritzker: Nucl. Instr. Meth. Phys. Res. B 186, 206 (2002)

    Article  ADS  Google Scholar 

  11. S. Utsunomiya, L.M. Wang, R.C. Ewing: Nucl. Instr. Meth. Phys. Res. B 191, 600 (2002)

    Article  ADS  Google Scholar 

  12. J. Lian, X.T. Zu, K.V.G. Kutty, J. Chen, L.M. Wang, R.C. Ewing: Phys. Rev. B 66, 054108 (2002)

    Article  ADS  Google Scholar 

  13. F. Gao, W.J. Weber: Phys. Rev. B 66, 024106 (2002)

    Article  ADS  Google Scholar 

  14. J. Nord, K. Nordlund, J. Keinonen: Phys. Rev. B 65, 165329 (2002)

    Article  ADS  Google Scholar 

  15. M. Rose, G. Gorzawski, G. Miehe, A.G. Balogh, H. Hahn: Nanostruct. Mater. 127128, 119 (1995)

    Google Scholar 

  16. M. Rose, A.G. Balogh, H. Hahn: Nucl. Instrum. Meth. Phys. Res. B 127128, 119 (1997)

    Google Scholar 

  17. A. Meldrum, L.A. Boatner, R.C. Ewing: Phys. Rev. Lett. 88, 025503 (2002)

    Article  ADS  Google Scholar 

  18. A. Meldrum, L.A. Boatner, R.C. Ewing: Nucl. Instr. Meth. Phys. Res. B 207, 28 (2003)

    Article  ADS  Google Scholar 

  19. Z.F. Li, B.X. Liu: Appl. Phys. A 75, 445 (2002)

    Article  ADS  Google Scholar 

  20. A.T. Motta, A. Paesano, Jr., R.C. Britcher, L. Armaral: Nucl. Instr. Meth. Phys. Res. B 175177, 521 (2001)

    Google Scholar 

  21. D. Pacifici, E.C. Moreira, G. Franzo, V. Martorino, F. Priolo, F. Iacona: Phys. Rev. B 65, 144109 (2002)

    Article  ADS  Google Scholar 

  22. D. Pacifici, G. Franzo, F. Iacona, F. Priolo: Physica E 16, 404 (2003)

    Article  ADS  Google Scholar 

  23. M. Samaras, P.M. Derlet, H. van Swygenhoven, M. Victoria: Phys. Rev. Lett. 88, 125505 (2002)

    Article  ADS  Google Scholar 

  24. H. Swygenhoven, P.M. Derlet, A. Hasnaoui, M. Samaras: In Nanostructures: Synthesis, Functional Properties and Applications, ed. by T. Tsakalakos, I.A. Ovid’ko, A.K. Vasudevan (Kluwer, Dordrecht, 2003), p. 155

  25. W. Voegeli, K. Albe, H. Hahn: Nucl. Instr. Meth. Phys. Res. B 202, 230 (2003)

    Article  ADS  Google Scholar 

  26. K.E. Sickafus, Hj. Matzke, K. Yasuda, P. Chodak, R.A. Verall, P.G. Lucuta, H.R. Andrews, A. Turos, R. Fromknecht, N. Baker: Nucl. Instr. Meth. Phys. Res. B 141, 358 (1998)

    Article  ADS  Google Scholar 

  27. A.P. Sutton, R.W. Balluffi: Interfaces in Crystalline Materials (Claredon, Oxford 1995)

  28. A.D. Brailsford, R. Bullough: J. Nucl. Mater. 44, 121 (1972)

    Article  ADS  Google Scholar 

  29. A.T. Motta, D.R. Olander: Acta Metall. Mater. 38, 2175 (1990)

    Article  ADS  Google Scholar 

  30. D.F. Pedraza, Radiat. Eff. 112, 11 (1990)

    Google Scholar 

  31. S.L. Dudarev, A.A. Semenov, C.H. Woo: Phys. Rev. B 67, 094103 (2003)

    Article  ADS  Google Scholar 

  32. J. Crank: The Mathematics of Diffusion (Clarendon, Oxford 1993)

  33. M.L. Swanson, J.R. Parsons, C.W. Hoelke: Radiat. Effects 9, 249 (1971)

    Article  ADS  Google Scholar 

  34. P.J. Desre: Nanostruct. Mater. 8, 687 (1997)

    Article  Google Scholar 

  35. J.P. Hirth, J. Lothe: Theory of Dislocations (Wiley, New York 1982)

  36. C.C. Koch: Rev. Adv. Mater. Sci. 5, 91 (2003)

    Google Scholar 

  37. C.H. Lee, M. Mori, U. Mizutani: J. Non-Cryst. Solids 117118, 733 (1990)

    Google Scholar 

  38. Y. Ogino, T. Yamasaki, S. Murayama, R. Sakai: J.Non-Cryst. Solids 117118, 737 (1990)

    Google Scholar 

  39. U. Y. Bai, C. Michaelson, C. Gente, R. Bormann: Phys. Rev. B 63, 064202 (2001)

    Article  ADS  Google Scholar 

  40. W.J. Weber: Nucl. Instr. Meth. Phys. Res. B 166167, 98 (2000)

    Google Scholar 

  41. H.W. Sheng, E. Ma: Phys. Res. B 63, 224205 (2001)

    Article  ADS  Google Scholar 

  42. E. Ma: Phys. Res. B 49, 931 (2003)

    Google Scholar 

  43. I.A. Ovid’ko, A.B. Reizis: J. Phys. D 32, 2833 (1999)

    Article  ADS  Google Scholar 

  44. M.Yu. Gutkin, I.A. Ovid’ko: Phys. Rev. B 63, 064515 (2001)

    Article  ADS  Google Scholar 

  45. M. Nagumo, T. Ishikawa, T. Endoh, Y. Inoue: Scr. Mater. 49, 837 (2003)

    Article  Google Scholar 

  46. J.Y. Huh, S.J. Moon: Thin Solid Films 377378, 611 (2000)

  47. M.Y. Gutkin, I.A. Ovid’ko: Plastic Deformation in Nanocrystalline Materials (Springer, Berlin, New York, 2004)

  48. R. Benedictus, A. Bottger, E.J. Mittenmejer: Phys. Rev. B 54, 9109 (1996)

    Article  ADS  Google Scholar 

  49. I.A. Ovid’ko: Phil. Mag. Lett. 79, 709 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.A. Ovid’ko.

Additional information

PACS

61.46.+w; 61.72.Cc; 61.80.Az

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovid’ko, I., Sheinerman, A. Irradiation-induced amorphization processes in nanocrystalline solids. Appl. Phys. A 81, 1083–1088 (2005). https://doi.org/10.1007/s00339-004-2960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2960-z

Keywords

Navigation