Skip to main content
Log in

Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Raman excitation profiles were generated between 695 and 985 nm for individual carbon nanotubes dispersed in aqueous solution. We confirmed that previously published spectral assignments for semi-conducting and metallic carbon nanotubes are able to predict the location and resonant maxima of radial breathing mode features in the Raman spectrum. Three large diameter features were observed within the excitation space over the scan range and accurately predicted as metallic species. There was significant agreement between predicted and observed Raman modes. However, one discrepancy is noted with the (6,4) nanotubes. This species is not observed when excited at or near its absorption transition. We find that the Raman cross-sections in general, assuming a diameter-based distribution of nanotubes, are disproportionately smaller for mod(n-m,3)=1 semi-conducting nanotubes than their counterparts by at least an order of magnitude. These results have important implications for the use of Raman spectroscopy to effectively characterize the chirality distribution of carbon nanotube samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Avouris: Acc. Chem. Res. 35, 1026 (2002)

    Article  Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund: Science of fullerenes and carbon nanotubes (Academic Press, San Diego 1996)

  3. R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

  4. M.S. Strano, V.C. Moore, M.K. Miller, M.J. Allen, H.A. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley: J. Nanosci. and Nanotech. 3, 81 (2003)

    Article  Google Scholar 

  5. S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman: Science 298, 2361 (2002)

    Article  ADS  Google Scholar 

  6. A. Kukovecz, C. Kramberger, V. Georgakilas, M. Prato, H. Kuzmany: Eur. Phys. J. B 28, 223 (2002)

    Article  ADS  Google Scholar 

  7. A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus: Science 275, 187 (1997)

    Article  Google Scholar 

  8. M.S. Strano, C.B. Huffman, V.C. Moore, M. J. O’Connell, E.H. Haroz, J. Hubbard, M. Miller, C. Kittrell, R. Sivarajan, R.H. Hauge, R.E. Smalley: J. Phys. Chem. B 107, 6979 (2003)

    Article  Google Scholar 

  9. M.J. Bronikowski, P.A. Willis, D.T. Colbert, K.A. Smith, R.E. Smalley: J. Vac. Sci. Technol., A 19, 1800 (2001)

    Article  ADS  Google Scholar 

  10. M. Canonico, G.B. Adams, C. Poweleit, J. Menendez, J.B. Page, G. Harris, H. P. van der Meulen, J.M. Calleja, J. Rubio: Phys. Rev. B 65, 201402 (2002)

    Article  ADS  Google Scholar 

  11. R. Saito, A. Grueneis, L.G. Cancado, M.A. Pimenta, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, A.G. Souza: Mol. Cryst. Liq. Cryst. 387, 287 (2002)

    Google Scholar 

  12. R. Saito, A. Jorio, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus: Phys. Rev. B 6408, 085312 (2001)

    Article  ADS  Google Scholar 

  13. A. Jorio, C. Fantini, M.S.S. Dantas, M.A. Pimenta, A.G. Souza, G.G. Samsonidze, V.W. Brar, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, R. Saito: Phys. Rev. B 66, 115411 (2002)

    Article  ADS  Google Scholar 

  14. A. Jorio, F.M. Matinaga, A. Righi, M.S.S. Dantas, M.A. Pimenta, A.G. Souza, J. Mendes, J.H. Hafner, C.M. Lieber, R. Saito, G. Dresselhaus, M.S. Dresselhaus: Brazilian J. Phys. 32, 921 (2002)

    Article  ADS  Google Scholar 

  15. A. Jorio, A.G. Souza, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito: Phys. Rev. B 65, 155412 (2002)

    Article  ADS  Google Scholar 

  16. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza, M.A. Pimenta, R. Saito: Accounts Chem. Res. 35, 1070 (2002)

    Article  Google Scholar 

  17. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza, R. Saito: Carbon 40, 2043 (2002)

    Article  Google Scholar 

  18. Z.H. Yu, L.E. Brus: J. Phys. Chem. B 105, 6831 (2001)

    Article  Google Scholar 

  19. Z.H. Yu, L.E. Brus: J. Phys. Chem. A 104, 10995 (2000)

    Article  Google Scholar 

  20. R. Saito, G. Dresselhaus, M.S. Dresselhaus: Phys. Rev. B 61, 2981 (2000)

    Article  ADS  Google Scholar 

  21. S. Reich, J. Maultzsch, C. Thomsen, P. Ordejon: Phys. Rev. B 66, 035412 (2002)

    Article  ADS  Google Scholar 

  22. S. Reich, C. Thomsen: Phys. Rev. B 62, 4273 (2000)

    Article  ADS  Google Scholar 

  23. M. J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J.P. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley: Science 297, 593 (2002)

    Article  ADS  Google Scholar 

  24. J.L. Sauvajol, E. Anglaret, S. Rols, L. Alvarez: Carbon 40, 1697 (2002)

    Article  Google Scholar 

  25. M.S. Strano, S.K. Doorn, E.H. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley: Nano Lett. 3, 1091 (2003)

    Article  ADS  Google Scholar 

  26. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba: Synthetic Metals 103, 2555 (1999)

    Article  Google Scholar 

  27. J.W. Mintmire, C.T. White: Phys. Rev. Lett. 81, 2506 (1998)

    Article  ADS  Google Scholar 

  28. T. Ando: J. Phys. Soc. Jap. 66, 1066 (1997)

    Article  ADS  Google Scholar 

  29. C.L. Keane, E.J. Mele: Phys. Rev. Lett. 90 (2003)

  30. J.L. Bahr, J.M. Tour: J. Mat. Chem. 12, 1952 (2002)

    Article  Google Scholar 

  31. J.L. Bahr, J. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley, J.M. Tour: J. Am. Chem. Soc. 123, 6536 (2001)

    Article  Google Scholar 

  32. J.M. Cowley, P. Nikolaev, A. Thess, R.E. Smalley: Chem. Phys. Lett. 265, 379 (1997)

    Article  ADS  Google Scholar 

  33. A. Gruneis, R. Saito, G.G. Samsonidze, T. Kimura, M.A. Pimenta, A. Jorio, A.G. Souza, G. Dresselhaus, M.S. Dresselhaus: Phys. Rev. B 67, 165402 (2003)

    Article  ADS  Google Scholar 

  34. M. Ichida, S. Mizuno, Y. Saito, H. Kataura, Y. Achiba, A. Nakamura: Phys. Rev. B 65, 241407 (2002)

    Article  ADS  Google Scholar 

  35. R.L. McCreery, Photometric Standards for Raman Spectroscopy (John Wiley & Sons, Chichester 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.S. Strano.

Additional information

PACS

61.46.+w; 73.22.-f; 78.30.-j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doorn, S., Heller, D., Barone, P. et al. Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A 78, 1147–1155 (2004). https://doi.org/10.1007/s00339-003-2466-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2466-0

Keywords

Navigation