Skip to main content
Log in

Deafferenzierung durch Verletzung, Degeneration und Alter – arthrogene Muskelhemmung – implizites Lernen

Deafferentation through injury, degeneration, and aging—arthrogenic muscle inhibition—implicit learning

  • Literatur im Fokus
  • Published:
Manuelle Medizin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Barbalho SM, Flato UAP, Tofano RJ, Goulart RA, Guiguer EL, Detregiachi CRP, Buchaim DV, Araújo AC, Buchaim RL, Reina FTR, Biteli P, Reina DOBR, Bechara MD (2020) Physical exercise and myokines: relationships with sarcopenia and cardiovascular complications. Int J Mol Sci 21(10):3607. https://doi.org/10.3390/ijms21103607

    Article  CAS  PubMed Central  Google Scholar 

  2. Baumeister J, Reinecke K, Schubert M, Weiss M (2011) Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res 29(9):1383–1389. https://doi.org/10.1002/jor.21380

    Article  PubMed  Google Scholar 

  3. Courtney CA, Durr RK, Emerson-Kavchak AJ, Witte EO, Santos MJ (2011) Heightened flexor withdrawal responses following ACL rupture are enhanced by passive tibial translation. Clin Neurophysiol 122(5):1005–1010. https://doi.org/10.1016/j.clinph.2010.07.029

    Article  PubMed  Google Scholar 

  4. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M, Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), Extended Group for EWGSOP2 (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/ageing/afy169

    Article  PubMed  Google Scholar 

  5. Grooms D, Appelbaum G, Onate J (2015) Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther 45(5):381–393. https://doi.org/10.2519/jospt.2015.5549

    Article  PubMed  Google Scholar 

  6. Konishi Y, Kasukawa T, Tobita H, Nishino A, Konishi M (2007) Gamma loop dysfunction of the quadriceps femoris of elderly patients hospitalized after fall injury. J Geriatr Phys Ther 30(2):54–59. https://doi.org/10.1519/00139143-200708000-00004

    Article  PubMed  Google Scholar 

  7. Konishi Y, Yoshii R, Ingersoll CD (2022) Gamma loop dysfunction as a possible neurophysiological mechanism of arthrogenic muscle inhibition: a narrative review of the literature. J Sport Rehabil. https://doi.org/10.1123/jsr.2021-0232

    Article  PubMed  Google Scholar 

  8. Laube W, Weber J, Thue L, Schleicher W (1998) Persistierende Kraftdefizite nach Hüft-TEP und Kreuzband-OP infolge gestörter Muskelaktivierung, Kinesiologische Elektromyographie II. Man Ther 2:120–129

    Google Scholar 

  9. Laube W (2009) Pathophysiologie des Sensomotorischen Systems nach Verletzungen und bei degenerativen Gelenkerkrankungen. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart New York, S 375–439

    Google Scholar 

  10. Laube W (2013) Muskelaktivität: Prägung des ZNS und endokrine Funktion – somatische oder degenerativ-nozizeptive Körperstruktur. Man Med 51:141–150. https://doi.org/10.1007/s00337-012-0989-1

    Article  Google Scholar 

  11. Lepley AS, Lepley LK (2021) Mechanisms of arthrogenic muscle inhibition. J Sport Rehabil. https://doi.org/10.1123/jsr.2020-0479

    Article  PubMed  Google Scholar 

  12. Needle AR, Lepley AS, Grooms DR (2017) Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med 47(7):1271–1288. https://doi.org/10.1007/s40279-016-0666-y

    Article  PubMed  Google Scholar 

  13. Rebmann D, Mayr HO, Schmal H, Hernandez Latorre S, Bernstein A (2020) Immunohistochemical analysis of sensory corpuscles in human transplants of the anterior cruciate ligament. J Orthop Surg Res 15(1):270. https://doi.org/10.1186/s13018-020-01785-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rice DA, McNair PJ, Lewis GN (2011) Mechanisms of quadriceps muscle weakness in knee joint osteoarthritis: the effects of prolonged vibration on torque and muscle activation in osteoarthritic and healthy control subjects. Arthritis Res Ther 13(5):R151. https://doi.org/10.1186/ar3467

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rice D, Lewis G, McNair P (2021) Impaired regulation of submaximal force after ACL reconstruction: role of muscle spindles. Int J Sports Med 42(6):550–558

    PubMed  Google Scholar 

  16. Rodriguez KM, Palmieri-Smith RM, Krishnan C (2020) How does anterior cruciate ligament reconstruction affect the functioning of the brain and spinal cord? A systematic review with meta-analysis. J Sport Health Sci 10(2):172–181. https://doi.org/10.1016/j.jshs.2020.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rush JL, Glaviano NR, Norte GE (2021) Assessment of quadriceps corticomotor and spinal-reflexive excitability in individuals with a history of anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Med 51(5):961–990. https://doi.org/10.1007/s40279-020-01403-8

    Article  PubMed  Google Scholar 

  18. Steidle-Kloc E, Wirth W, Glass NA, Ruhdorfer A, Cotofana S, Eckstein F, Segal NA (2015) Is pain in one knee associated with isometric muscle strength in the contralateral limb? Data from the osteoarthritis initiative. Am J Phys Med Rehabil 94(10):792–803. https://doi.org/10.1097/PHM.0000000000000262

    Article  PubMed  Google Scholar 

  19. Tayfur B, Charuphongsa C, Morrissey D, Miller SC (2021) Neuromuscular function of the knee joint following knee injuries: does it ever get back to normal? A systematic review with meta-analyses. Sports Med 51(2):321–338. https://doi.org/10.1007/s40279-020-01386-6

    Article  PubMed  Google Scholar 

  20. Ward SH, Perraton L, Bennell K, Pietrosimone B, Bryant AL (2019) Deficits in quadriceps force control after anterior cruciate ligament injury: potential central mechanisms. J Athl Train 54(5):505–512. https://doi.org/10.4085/1062-6050-414-17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Laube.

Ethics declarations

Interessenkonflikt

W. Laube gibt an, dass kein Interessenkonflikt besteht.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laube, W. Deafferenzierung durch Verletzung, Degeneration und Alter – arthrogene Muskelhemmung – implizites Lernen. Manuelle Medizin 60, 253–256 (2022). https://doi.org/10.1007/s00337-022-00907-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00337-022-00907-w

Navigation