Skip to main content

Advertisement

Log in

Mouse USF1 gene cloning: comparative organization within the c-myc gene family

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Upstream stimulatory factors (USF/MLTF) belong to the c-myc family of transcription factors. Through binding to target DNA as dimers, the ubiquitous USF proteins regulate a variety of genes. USF proteins are encoded by two genes, USF1 and USF2. Protein sequences of USF1 and 2 are highly homologous across species, suggesting functional conservation. To determine whether the genomic organization was conserved between USF1 and USF2, we isolated the murine USF1 gene and characterized its genomic structure. Both genes are similarly organized in 10 exons spanning over 10 kbp. By the 5′-rapid amplification of cDNA ends and S1 nuclease mapping methods, exon 1 was defined and the transcription initiation sites were mapped. The sequence of 8 kb of the gene, including 1.75 kb of 5’-flanking DNA, was determined. The promoter region is GC rich and lacks a typical TATA or CCAAT element. Strikingly, a comparison of the murine and human untranslated sequences reveals regions that exhibit greater than 73% sequence identity. A genomic alignment of the dimerization and DNA binding domains is presented for five genes of the c-myc family, suggesting a hypothetical common ancestor gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amati, B., Land, H. (1996). Myc-Max-Mad: a transcription factor network controlling cell-cycle progression, differentiation and death. Curr. Opin. Genet. Dev. 4, 102–108.

    Article  Google Scholar 

  • Baxevanis, A.D., Vinson, C.R. (1993). Interactions of coiled coils in tran- scription factors: where is the specificity? Curr. Opin. Genet. Dev. 3, 278–285.

    Article  PubMed  CAS  Google Scholar 

  • Beckmann, H., Kadesch, T. (1991). The leucine zipper of TFE3 dictates helix-loop-helix dimerization specificity. Genes Dev. 5, 1057–1066.

    Article  PubMed  CAS  Google Scholar 

  • Bird, A.P. (1986). CpG-rich islands and the function of DNA methylation. Nature 321, 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Bresnick, E.H., Felsenfeld, G. (1993). Evidence that the transcription factor USF is a component of the human β-globin locus control region heteromeric protein complex. J. Biol. Chem. 268, 18824–18834.

    PubMed  CAS  Google Scholar 

  • Carthew, R.W., Chodosh, L.A., Sharp, P.A. (1985). An RNA-polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Cell 43, 439–448.

    Article  PubMed  CAS  Google Scholar 

  • Carthew, R.W., Chodosh, L.A., Sharp, P.A. (1987). The major late transcription factor binds to and activates the mouse metallothionen I promoter. Genes Dev. 1, 973–980.

    Article  PubMed  CAS  Google Scholar 

  • Caterina, J.J., Ciavatta, D.J., Donze, D., Behringer, R.R., Townes, T.M. (1994). Multiple elements in human β-globin locus control region 5′ HS 2 are involved in enhancer activity and position-independent, transgene expression. Nucleic Acids Res. 22, 1006–1011.

    Article  PubMed  CAS  Google Scholar 

  • Chiang, C.M., Roeder, R.G. (1995). Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267, 531–536.

    Article  PubMed  CAS  Google Scholar 

  • Chodosh, L.A., Carthew, R.W., Morgan, R.W., Crabtree, G.R., Sharp, P.A. (1987). The adenovirus major late transcription factor binds to and activates the rat γ-fibrinogen promoter. Science 238, 684–688.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski, P., Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Cognet, M., Lone, Y.C., Vaulont, S., Kahn, A., Marie, J. (1987). Structure of the rat L-type pyruvate kinase. J. Mol. Biol. 196, 11–25.

    Article  PubMed  CAS  Google Scholar 

  • Cogswell, J.P., Godlevski, M.M., Bonham, M., Bisi, J., Babiss, L. (1995). Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter. Mol. Cell. Biol. 15, 2782–2790.

    PubMed  CAS  Google Scholar 

  • D’Adda di Fagagna, F., Marzio, G., Gutierrez, M.I., Kang, L.Y., Falaschi, A., Giacca, M. (1995). Molecular and functional interactions of transcription factor USF with the long terminal repeat of human immunodeficiency virus type 1. J. Virol. 69, 2765–2775.

    PubMed  Google Scholar 

  • Dessen, P., Fondrat, C., Valencien, C, Mugnier, C. (1990). BISANCE: a French service for access to biomolecular sequence databases. Comp. Appl. Biosci. 6, 355–356.

    PubMed  CAS  Google Scholar 

  • Du, H., Roy, A.L., Roeder, R.G. (1993). Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters. EMBO J. 12, 501–511.

    PubMed  CAS  Google Scholar 

  • Fisher, F., Goding, C.R. (1992). Single amino acid substitutions alter helix-loop-helix protein specificity for bases flanking the core CANNTG motif. EMBO J. 11, 4103–4109.

    PubMed  CAS  Google Scholar 

  • Gregor, P.D., Sawadogo, M., Roeder, R.G. (1990). The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev. 4, 1730–1740.

    Article  PubMed  CAS  Google Scholar 

  • Henrion, A.A., Martinez, A., Mattei, M.G., Kahn, A., Raymondjean, M. (1995). Structure, sequence, and chromosomal location of the gene for USF2 transcription factors in mouse. Genomics. 25, 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, P.W., Chernak, J.M. (1995). DNA binding and regulatory effects of transcription factors SP1 and USF at the rat amyloid precursor protein gene promoter. Nucleic Acids Res. 23, 2229–2235.

    Article  PubMed  CAS  Google Scholar 

  • Hurlin, P.J., Quéva, C, Koskinen, P.J., Steingrimsson, E., Ayer, D.E., Copeland, N.G., Jenkins, N.A., Eisenman, R.N. (1995). Mad3 and Mad4: novei Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J. 14, 5646–5659.

    PubMed  CAS  Google Scholar 

  • Kaulen, H., Pognonec, P., Gregor, P.D., Roeder, R.G. (1991). The Xenopus B1 factor is closely related to the mammalian activator USF and is implicated in the developmental regulation of TFIIIA gene expression. Mol. Cell. Biol. 11, 412–424.

    PubMed  CAS  Google Scholar 

  • Kel, O.V., Romaschenko, A.G., Kel, A.E., Wingender, E., Kolchanov, N.A. (1995). A compilation of composite regulatory elements affecting gene transcription. Nucleic Acids Res. 23, 4097–4103.

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum, B.J., Pognonec, P., Roeder, R.G. (1992). Definition of the transcriptional activation domain of recombinant 43-Kilodalton USF. Mol. Cell. Biol. 12, 5094–5101.

    PubMed  CAS  Google Scholar 

  • Kozlowski, M.T., Gan, L., Venuti, J.M., Sawadogo, M., Klein, W.H. (1991). Sea urchin USF: a helix-loop-helix protein active in embryonic ectoderm cells. Dev. Biol. 148, 625–630.

    Article  PubMed  CAS  Google Scholar 

  • Lefrancois-Martinez, A.M., Martinez, A., Antione, B., Raymondjean, M., Kahn, A. (1995). Upstream stimulatory factor proteins are major components of the glucose response complex of the L-type pyruvate kinase gene promoter. J. Biol. Chem. 270, 2640–2643.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Q., Luo, X., Sawadogo, M. (1994). Archaic structure of the gene encoding transcription factor USF. J. Biol. Chem. 269, 23894–23903.

    PubMed  CAS  Google Scholar 

  • Martinez, E., Chiang, C.M., Ge, H., Roeder, R.G. (1994). TATA-binding protein-associated factor(s) in TFIID function through the initiator to direct basal transcription from a TATA-less class II promoter. EMBO J. 13, 3115–3126.

    PubMed  CAS  Google Scholar 

  • Miyamoto, N.G., Moncollin, V., Egly, J.M., Chambon, P. (1985). Specific interaction between a transcription factor and the upstream element of the adenovirus-2 major late promoter. EMBO J. 4, 3563–3570.

    PubMed  CAS  Google Scholar 

  • Navankasattusas, S., Sawadogo, M., Van Bilsen, M., Dang, C.V., Chien, K.R. (1994). The basic helix-loop-helix protein upstream stimulating factor regulates the cardiac ventricular myosin light-chain 2 gene via independent cis regulatory elements. Mol. Cell. Biol. 14, 7331–7339.

    PubMed  CAS  Google Scholar 

  • Outram, S.V., Owen, M.J. (1994). The helix-loop-helix containing transcription factor USF activates the promoter of the CD2 gene. J. Biol. Chem. 269, 26525–26530.

    PubMed  CAS  Google Scholar 

  • Philipp, A., Schneider, A., Vasrik, I., Finke, K., Xiong, Y., Beach, D., Alitalo, K., Eilers, M. (1994). Repression of cyclin D1: a novel function of MYC. Mol. Cell. Biol. 14, 4032–4043.

    PubMed  CAS  Google Scholar 

  • Reisman, D., Rotter, V. (1993). The helix-loop-helix containing transcription factor USF binds to and transactivates the promoter of the p53 tumor suppressor gene. Nucleic Acids Res. 21, 345–350.

    Article  PubMed  CAS  Google Scholar 

  • Riccio, A., Pedone, P.V., Lund, L.R., Olesen, T., Olsen, H.S., Andreasen, P.A. (1992). Transforming growth factor beta 1-responsible element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene. Mol. Cell. Biol. 12, 1846–1855.

    PubMed  CAS  Google Scholar 

  • Salminen, M., Maire, P., Concordet, J.P., Moch, C, Porteu, A., Kahn, A., Daegelen, D. (1994). Fast-muscle-specific expression of human aldolase A transgenes. Mol. Cell. Biol. 14, 6797–6808.

    PubMed  CAS  Google Scholar 

  • Sawadogo, M., Van Dyke, M.W., Gregor, P.D., Roeder, R.G. (1988). Multiple forms of the human gene-specific transcription factor USF. I. Complete purification and identification of USF from HeLa cell nuclei. J. Biol. Chem. 263, 11985–11993.

    PubMed  CAS  Google Scholar 

  • Sha, M., Ferré d’Amaré, A.R., Burley, S.K., Goss, D.J. (1995). Anticooperative biphasic equilibrium binding of transcription factor upstream stimulatory factor to its cognate DNA monitored by protein fluorescence changes. J. Biol. Chem. 270, 19325–19329.

    Article  PubMed  CAS  Google Scholar 

  • Shieh, B.H., Sparkes, R.S., Gaynor, R.B., Lusis, A.J. (1993). Localization of the gene-encoding upstream stimulatory factor (USF) to human chromosome Iq22-q23. Genomics. 16, 266–268.

    Article  PubMed  CAS  Google Scholar 

  • Sirito, M., Lin, Q., Maity, T., Sawadogo, M. (1994). Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res. 22, 427–433.

    Article  PubMed  CAS  Google Scholar 

  • Sollenberg, K.G., Kao, T.-L., Taparowsky, E.J. (1994). Structural analysis of the chicken max gene. Oncogene 9, 661–664.

    Google Scholar 

  • Tassabehji, M., Newton, V.E., Read, A.P. (1994). Waardenburg syndrome type 2 caused by mutations in the human microphtalmia (MITF) gene. Nature Genet. 8, 251–255.

    Article  PubMed  CAS  Google Scholar 

  • Timchenko, N., Wilson, D.R., Taylor, L.R., Abdelsayed, S., Wilde, M., Sawadogo, M, Darlington, G.J. (1995). Autoregulation of the human C/EBP alpha gene by stimulation of upstream stimulatory factor binding. Mol. Cell. Biol. 15, 1192–1202.

    PubMed  CAS  Google Scholar 

  • Tontonoz, P., Kim, J.B., Graves, R.A., Spiegelman, B.M. (1993). ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol. Cell. Biol. 13, 4753–4759.

    PubMed  CAS  Google Scholar 

  • Viollet, B., Henrion, A.A., LefranÇois-Martinez A.-M., Kahn, A., Raymondjean, M., Martinez, A. (1996). Immunochemical characterization and transacting properties of USF isoforms. J. Biol. Chem. 271, 1405–1415.

    Article  PubMed  CAS  Google Scholar 

  • Vostrov, A.A., Quitschke, W.W., Vidal, F., Schwarzman, A.L., Goldgaber, D. (1995). USF binds to the APB alpha sequence in the promoter of the amyloid beta-protein precursor gene. Nucleic Acids Res. 23, 2734–2741.

    Article  PubMed  CAS  Google Scholar 

  • Watson, D.K., Psallidopoulos, M.C., Samuel, K.P., Dala-Favera, R., Papas, T.S. (1983). Nucleotide sequence analysis of human c-myc locus, chicken homologue, and myelocytomatosis virus MC29 transforming gene reveals a highly conserved product. Proc. Natl. Acad. Sci. USA 80, 3642–3645.

    Article  PubMed  CAS  Google Scholar 

  • Weis, L., Reinberg, D. (1992). Transcription by RNA polymerase II: initiator-directed formation of transcription-competent complexes. FASEB J. 6, 3300–3309.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequence data reported in this paper are assigned the accession numbers X95315 and X95316, in the EMBL Data Bank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henrion, A.A., Vaulont, S., Raymondjean, M. et al. Mouse USF1 gene cloning: comparative organization within the c-myc gene family. Mammalian Genome 7, 803–809 (1996). https://doi.org/10.1007/s003359900241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900241

Keywords

Navigation