Skip to main content

Advertisement

Log in

Genetic factors underlying host resistance to Rhipicephalus microplus tick infestation in Braford cattle: a systems biology perspective

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Approximately 80% of the world’s cattle are raised in regions with a high risk of tick-borne diseases, resulting in significant economic losses due to parasitism by Rhipicephalus (Boophilus) microplus. However, the lack of a systemic biology approach hampers a comprehensive understanding of tick–host interactions that mediate tick resistance phenotypes. Here, we conducted a genome-wide association study (GWAS) of 2933 Braford cattle and found 340 single-nucleotide polymorphisms (SNPs) associated with tick counts. Gene expression analyses were performed on skin samples obtained from previously tick-exposed heifers with extremely high or low estimated breeding values for R. microplus counts. Evaluations were performed both before and after artificial infestation with ticks. Differentially expressed genes were found within 1-Mb windows centered at significant SNPs from GWAS. A total of 330 genes were related to the breakdown of homeostasis that was induced by larval attachment to bovine skin. Enrichment analysis pointed to a key role of proteolysis and signal transduction via JAK/STAT, NFKB and WNT/beta catenin signaling pathways. Integrative analysis on matrixEQTL revealed two cis-eQTLs and four significant SNPs in the genes peptidyl arginine deiminase type IV (PADI4) and LOC11449251. The integration of genomic data from QTL maps and transcriptome analyses has identified a set of twelve key genes that show significant associations with tick loads. These genes could be key candidates to improve the accuracy of genomic predictions for tick resistance in Braford cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated/analyzed for this study can be found in the GEO repository database (https://www.ncbi.nlm.nih.gov/geo; accession number GSE 224634). We have restrictions on sharing the bovine phenotypes as they are licensed for commercial exploitation by GenSys® (https://gensys.com.br/) and Embrapa through a genomic predictions service. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

References

  • Abbas RZ, Zaman MA, Colwell DD, Gilleard J, Iqbal Z (2014) Acaricide resistance in cattle ticks and approaches to its management: the state of play. Vet Parasitol 203:6–20

    Article  CAS  PubMed  Google Scholar 

  • Abo-Ismail MK, Lansink N, Akanno E, Karisa BK, Crowley JJ, Moore SS, Bork E, Stothard P, Basarab JA, Plastow GS (2018) Development and validation of a small SNP panel for feed efficiency in beef cattle. J Anim Sci 96:375–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ (2010) Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci 93:743–752

    Article  CAS  PubMed  Google Scholar 

  • Aguilar I, Legarra A, Cardoso F, Masuda Y, Lourenco D, Misztal I (2019) Frequentist p-values for large-scale-single step genome-wide association, with an application to birth weight in American Angus cattle. Genet Sel Evol 51:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Agwunobi DO, Yu Z, Liu J (2021) A retrospective review on ixodid tick resistance against synthetic acaricides: implications and perspectives for future resistance prevention and mitigation. Pestic Biochem Physiol 173:104776

    Article  CAS  PubMed  Google Scholar 

  • Arita K, South AP, Hans-Filho G, Sakuma TH, Lai-Cheong J, Clements S, Odashiro M, Odashiro DN, Hans-Neto G, Hans NR, Holder MV, Bhogal BS, Hartshorne ST, Akiyama M, Shimizu H, McGrath JA (2008) Oncostatin M receptor-beta mutations underlie familial primary localized cutaneous amyloidosis. Am J Hum Genet 82:73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atanasova VS, Russell RJ, Webster TG, Cao Q, Agarwal P, Lim YZ, Krishnan S, Fuentes I, Guttmann-Gruber C, McGrath JA, Salas-Alanis JC, Fertala A, South AP (2019) Thrombospondin-1 is a major activator of TGF-beta signaling in recessive dystrophic epidermolysis bullosa fibroblasts. J Invest Dermatol 139:1497–1505

    Article  CAS  PubMed  Google Scholar 

  • Bagnall N, Gough J, Cadogan L, Burns B, Kongsuwan K (2009) Expression of intracellular calcium signalling genes in cattle skin during tick infestation. Parasite Immunol 31:177–187

    Article  CAS  PubMed  Google Scholar 

  • Bajaj L, Sharma J, di Ronza A, Zhang P, Eblimit A, Pal R, Roman D, Collette JR, Booth C, Chang KT, Sifers RN, Jung SY, Weimer JM, Chen R, Schekman RW, Sardiello M (2020) A CLN6-CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer. J Clin Investig 130:4118–4132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartikova P, Kazimirova M, Stibraniova I (2020) Ticks and the effects of their saliva on growth factors involved in skin wound healing. J Venom Res 10:45–52

    PubMed  PubMed Central  Google Scholar 

  • Bennett GF (1969) Boophilus microplus (Acarina: ixodidae): experimental infestations on cattle restrained from grooming. Exp Parasitol 26:323–328

    Article  CAS  PubMed  Google Scholar 

  • Biegelmeyer P, Nizoli LQ, da Silva SS, dos Santos TR, Dionello NJ, Gulias-Gomes CC, Cardoso FF (2015) Bovine genetic resistance effects on biological traits of Rhipicephalus (Boophilus) microplus. Vet Parasitol 208:231–237

    Article  CAS  PubMed  Google Scholar 

  • Borjigin L, Lo CW, Bai L, Hamada R, Sato H, Yoneyama S, Yasui A, Yasuda S, Yamanaka R, Mimura M, Inokuma M, Shinozaki Y, Tanaka N, Takeshima SN, Aida Y (2021) Risk assessment of bovine major histocompatibility complex class II DRB3 alleles for perinatal transmission of bovine leukemia virus. Pathogens 10(5):502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornstein P, Agah A, Kyriakides TR (2004) The role of thrombospondins 1 and 2 in the regulation of cell-matrix interactions, collagen fibril formation, and the response to injury. Int J Biochem Cell Biol 36:1115–1125

    Article  CAS  PubMed  Google Scholar 

  • Cardoso FF, Rosa GJ, Steibel JP, Ernst CW, Bates RO, Tempelman RJ (2008) Selective transcriptional profiling and data analysis strategies for expression quantitative trait loci mapping in outbred F2 populations. Genetics 180:1679–1690

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardoso FF, Matika O, Djikeng A, Mapholi N, Burrow HM, Yokoo MJI, Campos GS, Gulias-Gomes CC, Riggio V, Pong-Wong R, Engle B, Porto-Neto L, Maiwashe A, Hayes BJ (2021) Multiple country and breed genomic prediction of tick resistance in beef cattle. Front Immunol 12:620847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho WA, Maruyama SR, Franzin AM, Abatepaulo AR, Anderson JM, Ferreira BR, Ribeiro JM, More DD, Maia AA, Valenzuela JG, Garcia GR, de Miranda Santos IK (2010) Rhipicephalus (Boophilus) microplus: clotting time in tick-infested skin varies according to local inflammation and gene expression patterns in tick salivary glands. Exp Parasitol 124:428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho WA, Domingues R, de Azevedo Prata MC, da Silva MV, de Oliveira GC, Guimaraes SE, Machado MA (2014) Microarray analysis of tick-infested skin in resistant and susceptible cattle confirms the role of inflammatory pathways in immune activation and larval rejection. Vet Parasitol 205:307–317

    Article  CAS  PubMed  Google Scholar 

  • Cavani L, Braz CU, Giglioti R, Okino CH, Gulias-Gomes CC, Caetano AR, Oliveira MCS, Cardoso FF, de Oliveira HN (2020) Genomic study of Babesia bovis infection level and its association with tick count in Hereford and Braford Cattle. Front Immunol 11:1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceciliani F, Avila Morales G, De Matteis G, Grandoni F, Furioso Ferreira R, Roccabianca P, Lecchi C (2021) Methods in isolation and characterization of bovine monocytes and macrophages. Methods 186:22–41

    Article  CAS  PubMed  Google Scholar 

  • Christensen OF, Lund MS (2010) Genomic prediction when some animals are not genotyped. Genet Sel Evol 42:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  CAS  PubMed  Google Scholar 

  • Daniels MA, Luera D, Teixeiro E (2023) NFkappaB signaling in T cell memory. Front Immunol 14:1129191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14:986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos CG, Sousa MF, Vieira JIG, de Morais LR, Fernandes AAS, de Oliveira LT, Itajara Otto P, Machado MA, Silva MVGB, Bonafé CM, Braga Magalhães AF, Verardo LL (2022) Candidate genes for tick resistance in cattle: a systematic review combining post-GWAS analyses with sequencing data. J Appl Anim Res 50:460–470

    Article  Google Scholar 

  • Eghbalzadeh K, Georgi L, Louis T, Zhao H, Keser U, Weber C, Mollenhauer M, Conforti A, Wahlers T, Paunel-Gorgulu A (2019) Compromised anti-inflammatory action of neutrophil extracellular traps in PAD4-deficient mice contributes to aggravated acute inflammation after myocardial infarction. Front Immunol 10:2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Shikh MEM, El Sayed R, Nerviani A, Goldmann K, John CR, Hands R, Fossati-Jimack L, Lewis MJ, Pitzalis C (2019) Extracellular traps and PAD4 released by macrophages induce citrullination and auto-antibody production in autoimmune arthritis. J Autoimmun 105:102297

    Article  PubMed  Google Scholar 

  • Feng QL, Gu JJ, Chen JY, Zheng WY, Pan HH, Xu XY, Deng CC, Yang B (2022) TSP1 promotes fibroblast proliferation and extracellular matrix deposition via the IL6/JAK2/STAT3 signalling pathway in keloids. Exp Dermatol 31:1533–1542

    Article  CAS  PubMed  Google Scholar 

  • Ferreira BR, Silva JS (1999) Successive tick infestations selectively promote a T-helper 2 cytokine profile in mice. Immunology 96:434–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francischetti IM, Mather TN, Ribeiro JM (2005) Tick saliva is a potent inhibitor of endothelial cell proliferation and angiogenesis. Thromb Haemost 94:167–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giachetto PF, Cunha RC, Nhani A Jr, Garcia MV, Ferro JA, Andreotti R (2019) Gene expression in the salivary gland of Rhipicephalus (Boophilus) microplus fed on tick-susceptible and tick-resistant hosts. Front Cell Infect Microbiol 9:477

    Article  CAS  PubMed  Google Scholar 

  • Glatz M, Means T, Haas J, Steere AC, Mullegger RR (2017) Characterization of the early local immune response to Ixodes ricinus tick bites in human skin. Exp Dermatol 26:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grisi L, Leite RC, Martins JR, Barros AT, Andreotti R, Cancado PH, Leon AA, Pereira JB, Villela HS (2014) Reassessment of the potential economic impact of cattle parasites in Brazil. Revista brasileira de parasitologia veterinaria = Brazilian journal of veterinary parasitology : Orgao Oficial do Colegio Brasileiro de Parasitologia Veterinaria 23, 150–156

  • Habier D, Fernando RL, Garrick DJ (2013) Genomic BLUP decoded: a look into the black box of genomic prediction. Genetics 194:597–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart BL (2000) Role of grooming in biological control of ticks. Ann N Y Acad Sci 916:565–569

    Article  ADS  CAS  PubMed  Google Scholar 

  • Heinze DM, Wikel SK, Thangamani S, Alarcon-Chaidez FJ (2012) Transcriptional profiling of the murine cutaneous response during initial and subsequent infestations with Ixodes scapularis nymphs. Parasit Vectors 5:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflug Arch Eur J Physiol 447:469–479

    Article  CAS  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kongsuwan K, Piper EK, Bagnall NH, Ryan K, Moolhuijzen P, Bellgard M, Lew A, Jackson L, Jonsson NN (2008) Identification of genes involved with tick infestation in Bos taurus and Bos indicus. Dev Biol (basel) 132:77–88

    CAS  PubMed  Google Scholar 

  • Kongsuwan K, Josh P, Colgrave ML, Bagnall NH, Gough J, Burns B, Pearson R (2010) Activation of several key components of the epidermal differentiation pathway in cattle following infestation with the cattle tick, Rhipicephalus (Boophilus) microplus. Int J Parasitol 40:499–507

    Article  PubMed  Google Scholar 

  • Kovar L, Kopecky J, Rihova B (2002) Salivary gland extract from Ixodes ricinus tick modulates the host immune response towards the Th2 cytokine profile. Parasitol Res 88:1066–1072

    Article  PubMed  Google Scholar 

  • Krick S, Shi S, Ju W, Faul C, Tsai SY, Mundel P, Bottinger EP (2008) Mpv17l protects against mitochondrial oxidative stress and apoptosis by activation of Omi/HtrA2 protease. Proc Natl Acad Sci USA 105:14106–14111

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan Y, Wang Y, Lu H (2020) Opsin 3 is a key regulator of ultraviolet A-induced photoageing in human dermal fibroblast cells. Br J Dermatol 182:1228–1244

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Ke C, Liu L, Gao Y, Xu L, Han B, Zhao Y, Zhang S, Sun D (2022) Genome-wide association studies for immunoglobulin concentrations in colostrum and serum in Chinese Holstein. BMC Genomics 23:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longeri M, Russo V, Strillacci MG, Perillo A, Carisetti M, Cozzi MC, Neola B, Roperto S (2021) Association between BoLA-DRB3.2 polymorphism and Bovine papillomavirus infection for bladder tumor risk in Podolica Cattle. Front Vet Sci 8:630089

    Article  PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma B, Hottiger MO (2016) Crosstalk between Wnt/beta-catenin and NF-kappaB signaling pathway during inflammation. Front Immunol 7:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado MA, Azevedo AL, Teodoro RL, Pires MA, Peixoto MG, de Freitas C, Prata MC, Furlong J, da Silva MV, Guimaraes SE, Regitano LC, Coutinho LL, Gasparin G, Verneque RS (2010) Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus x Bos indicus). BMC Genom 11:280

    Article  Google Scholar 

  • Mahoney JA, Ntolosi B, DaSilva RP, Gordon S, McKnight AJ (2001) Cloning and characterization of CPVL, a novel serine carboxypeptidase, from human macrophages. Genomics 72:243–251

    Article  CAS  PubMed  Google Scholar 

  • Mantilla Valdivieso EF, Ross EM, Raza A, Naseem MN, Kamran M, Hayes BJ, Jonsson NN, James P, Tabor AE (2022) Transcriptional changes in the peripheral blood leukocytes from Brangus cattle before and after tick challenge with Rhipicephalus australis. BMC Genom 23:454

    Article  CAS  Google Scholar 

  • Mapholi NO, Maiwashe A, Matika O, Riggio V, Bishop SC, MacNeil MD, Banga C, Taylor JF, Dzama K (2016) Genome-wide association study of tick resistance in South African Nguni cattle. Ticks Tick-Borne Dis 7:487–497

    Article  CAS  PubMed  Google Scholar 

  • Marques R, Kruger RF, Peterson AT, de Melo LF, Vicenzi N, Jimenez-Garcia D (2020) Climate change implications for the distribution of the babesiosis and anaplasmosis tick vector, Rhipicephalus (Boophilus) microplus. Vet Res 51:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez ML, Machado MA, Nascimento CS, Silva MV, Teodoro RL, Furlong J, Prata MC, Campos AL, Guimaraes MF, Azevedo AL, Pires MF, Verneque RS (2006) Association of BoLA-DRB3.2 alleles with tick (Boophilus microplus) resistance in cattle. Genet Mol Res 5:513–524

    CAS  PubMed  Google Scholar 

  • Misztal I, Legarra A, Aguilar I (2009) Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci 92:4648–4655

    Article  CAS  PubMed  Google Scholar 

  • Morales JPA, Lopez-Herrera A, Zuluaga JE (2020) Association of BoLA DRB3 gene polymorphisms with BoHV-1 infection and zootechnical traits. Open Vet J 10:331–339

    Article  PubMed  PubMed Central  Google Scholar 

  • More DD, Cardoso FF, Mudadu MA, Malago-Jr W, Gulias-Gomes CC, Sollero BP, Ibelli AMG, Coutinho LL, Regitano LCA (2019) Network analysis uncovers putative genes affecting resistance to tick infestation in Braford cattle skin. BMC Genom 20:998

    Article  CAS  Google Scholar 

  • Nascimento CS, Machado MA, Guimaraes SE, Guimaraes MF, Peixoto JO, Furlong J, Prata MC, Verneque RS, Teodoro RL, Lopes PS (2010) Differential expression of genes in resistant versus susceptible Gyr x Holstein cattle challenged with the tick Rhipicephalus (Boophilus) microplus. Genet Mol Res 9:1974–1979

    Article  CAS  PubMed  Google Scholar 

  • Neelakanta G, Sultana H (2021) Tick saliva and salivary glands: what do we know so far on their role in arthropod blood feeding and pathogen transmission. Front Cell Infect Microbiol 11:816547

    Article  CAS  PubMed  Google Scholar 

  • Norimine J, Brown WC (2005) Intrahaplotype and interhaplotype pairing of bovine leukocyte antigen DQA and DQB molecules generate functional DQ molecules important for priming CD4(+) T-lymphocyte responses. Immunogenetics 57:750–762

    Article  CAS  PubMed  Google Scholar 

  • Nuttall PA (2023) Tick saliva and its role in pathogen transmission. Wien klin Wochenschr 135(7–8):165–176. https://doi.org/10.1007/s00508-019-1500-y

    Article  PubMed  Google Scholar 

  • Obaid MK, Islam N, Alouffi A, Khan AZ, da Silva Vaz Jr I, Tanaka T, Ali A (2022) Acaricides resistance in ticks: selection, diagnosis, mechanisms, and mitigation. Front Cell Infect Microbiol 12, 941831

  • Otto PI, Guimaraes SEF, Verardo LL, Azevedo ALS, Vandenplas J, Soares ACC, Sevillano CA, Veroneze R, de Fatima APM, de Freitas C, Prata MCA, Furlong J, Verneque RS, Martins MF, Panetto JCC, Carvalho WA, Gobo DOR, da Silva M, Machado MA (2018) Genome-wide association studies for tick resistance in Bos taurus x Bos indicus crossbred cattle: a deeper look into this intricate mechanism. J Dairy Sci 101:11020–11032

    Article  CAS  PubMed  Google Scholar 

  • Piper EK, Jackson LA, Bagnall NH, Kongsuwan KK, Lew AE, Jonsson NN (2008) Gene expression in the skin of Bos taurus and Bos indicus cattle infested with the cattle tick, Rhipicephalus (Boophilus) microplus. Vet Immunol Immunopathol 126:110–119

    Article  CAS  PubMed  Google Scholar 

  • Piper EK, Jackson LA, Bielefeldt-Ohmann H, Gondro C, Lew-Tabor AE, Jonsson NN (2010) Tick-susceptible Bos taurus cattle display an increased cellular response at the site of larval Rhipicephalus (Boophilus) microplus attachment, compared with tick-resistant Bos indicus cattle. Int J Parasitol 40:431–441

    Article  PubMed  Google Scholar 

  • Poole NM, Mamidanna G, Smith RA, Coons LB, Cole JA (2013) Prostaglandin E(2) in tick saliva regulates macrophage cell migration and cytokine profile. Parasit Vectors 6:261

    Article  PubMed  PubMed Central  Google Scholar 

  • Porto Neto LR, Bunch RJ, Harrison BE, Prayaga KC, Barendse W (2010) Haplotypes that include the integrin alpha 11 gene are associated with tick burden in cattle. BMC Genet 11:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramachandra RN, Wikel SK (1992) Modulation of host-immune responses by ticks (Acari: Ixodidae): effect of salivary gland extracts on host macrophages and lymphocyte cytokine production. J Med Entomol 29:818–826

    Article  CAS  PubMed  Google Scholar 

  • Raza SHA, Khan S, Amjadi M, Abdelnour SA, Ohran H, Alanazi KM, Abd El-Hack ME, Taha AE, Khan R, Gong C, Schreurs NM, Zhao C, Wei D, Zan L (2020) Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Arch Biochem Biophys 694:108543

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Schulz BL, Nouwens A, Naseem MN, Kamran M, Mantilla Valdivieso EF, Kerr ED, Constantinoiu C, Jonsson NN, James P, Tabor AE (2023) Application of quantitative proteomics to discover biomarkers for tick resistance in cattle. Front Immunol 14:1091066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regitano LCA, Ibelli AMG, Gasparin G, Miyata M, Azevedo ALS, Coutinho LL, Teodoro RL, Machado MA, Silva M, Nakata LC, Zaros LG, Sonstegard TS, Silva AM, Alencar MM, Oliveira MCS (2008) On the search for markers of tick resistance in bovines. Dev Biol (basel) 132:225–230

    CAS  PubMed  Google Scholar 

  • Roberts JA (1971) Behavior of larvae of the cattle tick, Boophilus microplus (Canestrini), on cattle of differing degrees of resistance. J Parasitol 57:651–656

    Article  CAS  PubMed  Google Scholar 

  • Roberts JA, Kerr JD (1976) Boophilus microplus: passive transfer of resistance in cattle. J Parasitol 62:485–488

    Article  CAS  PubMed  Google Scholar 

  • Sargolzaei M, Chesnais JP, Schenkel FS (2014) A new approach for efficient genotype imputation using information from relatives. BMC Genom 15:478

    Article  Google Scholar 

  • Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28:1353–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva NC, Vale VF, Franco PF, Gontijo NF, Valenzuela JG, Pereira MH, Sant’Anna MR, Rodrigues DS, Lima WS, Fux B, Araujo RN (2016) Saliva of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) inhibits classical and alternative complement pathways. Parasit Vectors 9:445

    Article  PubMed  PubMed Central  Google Scholar 

  • Skallova A, Iezzi G, Ampenberger F, Kopf M, Kopecky J (2008) Tick saliva inhibits dendritic cell migration, maturation, and function while promoting development of Th2 responses. J Immunol 180:6186–6192

    Article  CAS  PubMed  Google Scholar 

  • Sollero BP, Junqueira VS, Gomes CCG, Caetano AR, Cardoso FF (2017) Tag SNP selection for prediction of tick resistance in Brazilian Braford and Hereford cattle breeds using Bayesian methods. Genet Sel Evol 49:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Stachowicz A, Pandey R, Sundararaman N, Venkatraman V, Van Eyk JE, Fert-Bober J (2022) Protein arginine deiminase 2 (PAD2) modulates the polarization of THP-1 macrophages to the anti-inflammatory M2 phenotype. J Inflamm 19:20

    Article  Google Scholar 

  • Tabor AE, Ali A, Rehman G, Rocha Garcia G, Zangirolamo AF, Malardo T, Jonsson NN (2017) Cattle tick Rhipicephalus microplus-host interface: a review of resistant and susceptible host responses. Front Cell Infect Microbiol 7:506

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeshima S, Matsumoto Y, Chen J, Yoshida T, Mukoyama H, Aida Y (2008) Evidence for cattle major histocompatibility complex (BoLA) class II DQA1 gene heterozygote advantage against clinical mastitis caused by Streptococci and Escherichia species. Tissue Antigens 72:525–531

    Article  CAS  PubMed  Google Scholar 

  • Tiezzi F, Parker-Gaddis KL, Cole JB, Clay JS, Maltecca C (2015) A genome-wide association study for clinical mastitis in first parity US Holstein cows using single-step approach and genomic matrix re-weighting procedure. PLoS ONE 10:e0114919

    Article  PubMed  PubMed Central  Google Scholar 

  • Tirloni L, Reck J, Terra RM, Martins JR, Mulenga A, Sherman NE, Fox JW, Yates JR, 3rd, Termignoni C, Pinto AF, Vaz Ida S, Jr. (2014) Proteomic analysis of cattle tick Rhipicephalus (Boophilus) microplus saliva: a comparison between partially and fully engorged females. PloS one 9, e94831

  • Tseng PY, Hoon MA (2021) Oncostatin M can sensitize sensory neurons in inflammatory pruritus. Sci Transl Med 13:eabe3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Untalan PM, Guerrero FD, Haines LR, Pearson TW (2005) Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus. Insect Biochem Mol Biol 35:141–151

    Article  CAS  PubMed  Google Scholar 

  • Utech KB, Wharton RH (1982) Breeding for resistance to Boophilus microplus in Australian Illawarra Shorthorn and Brahman x Australian Illawarra Shorthorn cattle. Aust Vet J 58:41–46

    Article  CAS  PubMed  Google Scholar 

  • van Oosterwijk JG, Wikel SK (2021) Resistance to ticks and the path to anti-tick and transmission blocking vaccines. Vaccines 9:725

    Article  PubMed  PubMed Central  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam KV (2003) Human 3’-phosphoadenosine 5’-phosphosulfate (PAPS) synthase: biochemistry, molecular biology and genetic deficiency. IUBMB Life 55:1–11

    Article  CAS  PubMed  Google Scholar 

  • Weingarten DJ, Shrestha A, Juda-Nelson K, Kissiwaa SA, Spruston E, Jackman SL (2022) Fast resupply of synaptic vesicles requires synaptotagmin-3. Nature 611:320–325

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wikel S (2013) Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol 4:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Willis AI, Sadowitz B, Fuse S, Maier KG, Lee TS, Wang XJ, Tuszynski GP, Sumpio BE, Gahtan V (2011) Thrombospondin 1, fibronectin, and vitronectin are differentially dependent upon RAS, ERK1/2, and p38 for induction of vascular smooth muscle cell chemotaxis. Vasc Endovasc Surg 45:55–62

    Article  Google Scholar 

  • Yamashita A, Hiraki Y, Yamazaki T (2017) Identification of CLN6 as a molecular entity of endoplasmic reticulum-driven anti-aggregate activity. Biochem Biophys Res Commun 487:917–922

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Delta G Connection/Gensys breeding program for providing this research’s animals and performance data. We thank our colleagues from Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP) Functional Genomics Center, especially Aline Silva Mello Cesar, for releasing the use of the Metacore® software key and helping with understanding some of the algorithms used in the analysis. We also thank Michael D. MacNeil, our colleague from Delta Genetics, for his support and improvement in the manuscript’s English language. We also appreciate the dedication and support of all field technicians involved in animal husbandry and tick infestations during the experiments.

Funding

This research was financially supported by Embrapa (Brazilian Agricultural Research Corporation) grants, which provided infrastructure, consumables, and personnel for the field experiment and laboratory analyses. Personnel and consumables were also supported by CAPES (Coordination for the Improvement of Higher Level Personnel) grant PNPD 02645/09–2. FFC also acknowledges funding from CNPq (National Council for Scientific and Technological Development) grant 305102/2018–4.

Author information

Authors and Affiliations

Authors

Contributions

EBG involved in investigation, methodology, project administration, writing—original draft; FFC in conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, supervision, validation, visualization, writing—review & editing; LCAR in conceptualization, data curation, funding acquisition, investigation, methodology, project administration, resources, supervision, visualization, writing—review & editing; RD in data curation, formal analysis, investigation, methodology, project administration, validation, visualization, writing—review & editing; WAC in conceptualization, formal analysis, investigation, methodology, supervision, validation, visualization, writing—original draft, writing—review & editing.

Corresponding author

Correspondence to Wanessa A. Carvalho.

Ethics declarations

Conflict of interest

The authors declare that the research was performed in the absence of any commercial or financial relationships that could be construed as a potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

335_2024_10030_MOESM1_ESM.csv

Supplementary Table 1. List of 340 significative SNPs ( − log10 (P) >  3.0) evaluated for bovine resistance to R. microplus ticks. This list of SNPs was derived from a genome-wide association study (GWAS) in a population of Braford cattle evaluated for bovine resistance to R. microplus ticks. Braford cattle (n =  2933) were genotyped by BovineHD DNA chip (Illumina®) and artificially challenged repeatedly with R. microplus for engorged female tick counts (number of records including repeated measures: 9203). A total of 480,948 SNPs were analyzed by the single-step GBLUP method of which 340 present  − log10 (P) >  3.0 (CSV 28 kb)

335_2024_10030_MOESM2_ESM.xlsx

Supplementary Table 2. The ten most relevant biological processes highlighted by enrichment analysis of DEGs from Braford animals previously phenotyped for R. microplus resistance for R vs S comparison. The list of 121 annotated DEGs (FDR < 0.05; |Log2FC| ≥ 1) derived from R vs S comparison (n = 20 and = 19, respectively) were used for gene ontology enrichment analysis on Metacore® software (Clarivate Analytics, CA, USA). The table displays the ten most relevant GO processes, the total number of genes on the GO database and the corresponding entry to our DEG database (in data), statistics (P and False Discovery Rate), and the abbreviation of the DEGs involved in each process (XLSX 13 kb)

335_2024_10030_MOESM3_ESM.xlsx

Supplementary Table 3. The ten most relevant process networks highlighted by enrichment analysis of DEGs from Braford animals previously phenotyped for R. microplus resistance for R vs S comparison. The list of 121 annotated DEGs (FDR < 0.05; |Log2FC| ≥ 1) derived from R vs S comparison (R = 20 and S = 19 animals) were used for gene ontology enrichment analysis on Metacore® software (Clarivate Analytics, CA, USA). The table displays the ten most relevant process networks, the total numbers of genes on the GO database and the correspondent entry to our DEG database (in data), statistics (P and False Discovery Rate), and the network objects from the DEG database (XLSX 13 kb)

335_2024_10030_MOESM4_ESM.xlsx

Supplementary Table 4. The ten most relevant process networks highlighted by enrichment analysis of 330 genes from BI vs AI comparison within the genomic 1Mb windows centered at each one of the 227 SNPs potentially associated with tick counts. From the 4704 DEGs found in BI vs AI comparison, 330 genes were within the genomic 1Mb windows centered at each of the 227 SNPs potentially associated with tick counts. These 330 genes were used for gene ontology enrichment analysis on Metacore® software (Clarivate Analytics, CA, USA). The table displays the ten most relevant process networks, the total numbers of genes on the GO database and the correspondent entry to our DEG database (in data), statistics (P and False Discovery Rate), and the network objects from the DEG database (XLSX 13 kb)

335_2024_10030_MOESM5_ESM.xlsx

Supplementary Table 5. The ten most relevant pathway maps highlighted by enrichment analysis of 330 genes at BI vs AI comparison within the genomic 1Mb windows centered at each of the 227 SNPs potentially associated with tick counts. From the 4704 DEGs found in BI vs AI comparison, 330 genes were within the genomic 1Mb windows centered at each of the 227 SNPs potentially associated with tick counts. These 330 genes were used for enrichment analysis on Metacore® software (Clarivate Analytics, CA, USA). The table displays the ten most relevant pathway maps, the total numbers of genes on the Metacore® database and the correspondent entry to our DEG database (in data), statistics (P and False Discovery Rate), and the network objects from the DEG database (XLSX 13 kb)

335_2024_10030_MOESM6_ESM.xlsx

Supplementary Table 6. Genetic correlation between RNA abundance and tick counts. The normalized read count for each potential cis-eQTLs and DEGs of R vs S comparison were correlated with tick counts (mean of four consecutive tick counts from naturally infested animals). The cutoff > ǀ0.8ǀ was used. Correlation above 0.8 was highlighted in green, and below − 0.8 was highlighted in red (XLSX 30 kb)

335_2024_10030_MOESM7_ESM.xls

Supplementary Table 7. The ten most relevant process networks highlighted by enrichment analysis of genes with significant correlation to tick counts displayed Multi-trait AIREML analyses. The 313 DEGs exclusively found at BI x AI comparison, which were within a 1Mb window of a GWAS, plus all the 121 DEGs of R vs S comparison. Genes associated with tick counts (r > |0.8|) before infestation (BI; n = 61) and after infestation (AI; n = 84) were aligned and enriched on Metacore® software (Clarivate Analytics). The intersection set of genes for both experiments defined as “common” (gray columns) and “unique” for BI (blue columns) and AI (orange columns) were enriched for the ten most relevant network process functional ontology comparing dataset gene lists. The probability of a random intersection between a set of dataset genes and the size of the target list with ontology entities was estimated in the p-value of hypergeometric intersection. The lower P (displayed on the top of the representative graph) means higher relevance of the entity to the dataset, which shows in a higher rating for the entity (XLS 42 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, W.A., Gaspar, E.B., Domingues, R. et al. Genetic factors underlying host resistance to Rhipicephalus microplus tick infestation in Braford cattle: a systems biology perspective. Mamm Genome (2024). https://doi.org/10.1007/s00335-024-10030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00335-024-10030-x

Navigation