Skip to main content
Log in

Copy number variations of MICAL-L2 shaping gene expression contribute to different phenotypes of cattle

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Copy number variations (CNVs) recently have been recognized as an important source of genetic variability. Compelling evidence has indicated that CNVs are responsible for phenotypic traits by altering the copy numbers of functional genes. The molecule interacting with CasL-like protein 2 (MICAL-L2) gene plays a critical role in muscle fiber development and has been identified in the CNV region by comparative genomic hybridization array. In the present study, we detected the different distributions of MICAL-L2 gene copy numbers in four Chinese cattle breeds (QC, NY, LX, and CY) and investigated the functional effects of MICAL-L2 CNVs on the gene’s expression level and the phenotypic traits in QC and NY cattle. The results showed that the copy number loss (relative to Angus cattle) was more frequent in CY than in the other breeds. The MICAL-L2 gene copy number presented a moderate negative correlation with the transcriptional expression in fetal skeletal muscles (P < 0.05). Statistical analysis revealed that the MICAL-L2 CNVs were significantly associated with body weight, body height, and body length of NY cattle in the early stages (6 and 12 months old), and the copy number loss showed better traits than the gain and/or median groups (P < 0.05). No significance was found at the late stages in QC (24 months old) and NY cattle (18 and 24 months old). These observations provided further insight into the associations between cattle CNVs and economic traits, suggesting that the CNVs may be considered promising markers for the molecular breeding of Chinese beef cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldred PM, Hollox EJ, Armour JA (2005) Copy number polymorphism and expression level variation of the human α-defensin genes DEFA1 and DEFA3. Hum Mol Genet 14(14):2045–2052

    Article  PubMed  CAS  Google Scholar 

  • Ali S, Srivastava AK, Chopra R, Aggarwal S, Garg VK, Bhattacharya SN, Bamezai RNK (2013) IL12B SNPs and copy number variation in IL23R gene associated with susceptibility to leprosy. J Med Genet 50(1):34–42

    Article  PubMed  CAS  Google Scholar 

  • Bae J, Cheong H, Kim L, NamGung S, Park T, Chun J-Y, Kim J, Pasaje C, Lee J, Shin H (2010) Identification of copy number variations and common deletion polymorphisms in cattle. BMC Genomics 11(1):232

    Article  PubMed  Google Scholar 

  • Barendse W, Vaiman D, Kemp SJ, Sugimoto Y, Armitage SM, Williams JL, Sun HS, Eggen A, Agaba M, Aleyasin SA et al (1997) A medium-density genetic linkage map of the bovine genome. Mamm Genome 8(1):21–28

    Article  PubMed  CAS  Google Scholar 

  • Bickhart DM, Hou YL, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK, Song JZ, Schnabe RD, Ventura M, Taylor JF et al (2012) Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res 22(4):778–790

    Article  PubMed  CAS  Google Scholar 

  • Casas E, White S, Riley D, Smith T, Brenneman R, Olson T, Johnson D, Coleman S, Bennett G, Chase C (2005) Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J Anim Sci 83(1):13–19

    PubMed  CAS  Google Scholar 

  • Cheong H, Yoon DH, Park B, Kim L, Bae J, Namgoong S, Lee H, Han C, Kim J, Cheong IC (2008) A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC Genet 9(1):33

    Article  PubMed  Google Scholar 

  • Choi JW, Lee KT, Liao X, Stothard P, An HS, Ahn S, Lee S, Lee SY, Moore SS, Kim TH (2013) Genome-wide copy number variation in Hanwoo, Black Angus, and Holstein cattle. Mamm Genome 24:1–13

    Article  Google Scholar 

  • Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang YJ, Aerts J, Andrews TD, Barnes C, Campbell P et al (2010) Origins and functional impact of copy number variation in the human genome. Nature 464(7289):704–712

    Article  PubMed  CAS  Google Scholar 

  • Elsik CG, Tellam RL, Worley KC (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324(5926):522–528

    Article  PubMed  Google Scholar 

  • Feuk L, Carson AR, Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7(2):85–97

    Article  PubMed  CAS  Google Scholar 

  • Fontanesi L, Martelli P, Beretti F, Riggio V, Dall’Olio S, Colombo M, Casadio R, Russo V, Portolano B (2010) An initial comparative map of copy number variations in the goat (Capra hircus) genome. BMC Genomics 11(1):639

    Article  PubMed  Google Scholar 

  • Giridharan SSP, Rohn JL, Naslavsky N, Caplan S (2012) Differential regulation of actin microfilaments by human MICAL proteins. J Cell Sci 125(3):614–624

    Article  PubMed  CAS  Google Scholar 

  • Giuffra E, Törnsten A, Marklund S, Bongcam-Rudloff E, Chardon P, Kijas JM, Anderson SI, Archibald AL, Andersson L (2002) A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT. Mamm Genome 13(10):569–577

    Article  PubMed  CAS  Google Scholar 

  • Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H, Estes A, Brune CW, Bradfield JP (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459(7246):569–573

    Article  PubMed  CAS  Google Scholar 

  • Golzio C, Willer J, Talkowski ME, Oh EC, Taniguchi Y, Jacquemont S, Reymond A, Sun M, Sawa A, Gusella JF et al (2012) KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 485(7398):363–367

    Article  PubMed  CAS  Google Scholar 

  • Henrichsen CN, Chaignat E, Reymond A (2009) Copy number variants, diseases and gene expression. Hum Mol Genet 18:R1–R8

    Article  PubMed  CAS  Google Scholar 

  • Hou YL, Liu GE, Bickhart DM, Cardone MF, Wang K, Kim ES, Matukumalli LK, Ventura M, Song JZ, VanRaden PM et al (2011) Genomic characteristics of cattle copy number variations. BMC Genomics 12:127

    Article  PubMed  Google Scholar 

  • Hou Y, Bickhart DM, Chung H, Hutchison JL, Norman HD, Connor EE, Liu GE (2012) Analysis of copy number variations in Holstein cows identify potential mechanisms contributing to differences in residual feed intake. Funct Integr Genomics 12(4):717–723

    Article  PubMed  CAS  Google Scholar 

  • Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36(9):949–951

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Liu JF, Sun DX, Ma PP, Ding XD, Yu Y, Zhang Q (2010) Genome wide association studies for milk production traits in Chinese Holstein population. PLoS One 5(10):e13661

    Article  PubMed  Google Scholar 

  • Knezevic SZ, Streibig JC, Ritz C (2007) Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21(3):840–848

    Article  Google Scholar 

  • Lee H, Bae S, Choi BW, Choi JC, Yoon Y (2011) Copy number variation of CCL3L1 influences asthma risk by modulating IL-10 expression. Clin Chim Acta 412(23–24):2100–2104

    Article  PubMed  CAS  Google Scholar 

  • Lehnert SA, Reverter A, Byrne KA, Wang Y, Nattrass GS, Hudson NJ, Greenwood PL (2007) Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC Dev Biol 7(1):95

    Article  PubMed  Google Scholar 

  • Li H, Wu Y, Loos RJ, Hu FB, Liu Y, Wang J, Yu Z, Lin X (2008) Variants in the fat mass- and obesity-associated (FTO) gene are not associated with obesity in a Chinese Han population. Diabetes 57(1):264–268

    Article  PubMed  CAS  Google Scholar 

  • Liu GE, Hou YL, Zhu B, Cardone MF, Jiang L, Cellamare A, Mitra A, Alexander LJ, Coutinho LL, Dell’Aquila ME et al (2010) Analysis of copy number variations among diverse cattle breeds. Genome Res 20(5):693–703

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuji H, Nishimura N, Yamamura R, Kanayama H-o, Sasaki T (2008) Involvement of actinin-4 in the recruitment of JRAB/MICAL-L2 to cell–cell junctions and the formation of functional tight junctions. Mol Cell Biol 28(10):3324–3335

    Article  PubMed  CAS  Google Scholar 

  • Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA, Mountain JL, Misra R (2007) Diet and the evolution of human amylase gene copy number variation. Nat Genet 39(10):1256–1260

    Article  PubMed  CAS  Google Scholar 

  • Pinto D, Darvishi K, Shi XH, Rajan D, Rigler D, Fitzgerald T, Lionel AC, Thiruvahindrapuram B, MacDonald JR, Mills R et al (2011) Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat Biotechnol 29(6):512–520

    Article  PubMed  CAS  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen WW et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454

    Article  PubMed  CAS  Google Scholar 

  • Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi MY et al (2004) Large-scale copy number polymorphism in the human genome. Science 305(5683):525–528

    Article  PubMed  CAS  Google Scholar 

  • Sonstegard TS, Garrett WM, Ashwell MS, Bennett GL, Kappes SM, Van Tassell CP (2000) Comparative map alignment of BTA27 and HSA4 and 8 to identify conserved segments of genome containing fat deposition QTL. Mamm Genome 11(8):682–688

    Article  PubMed  CAS  Google Scholar 

  • Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietiläinen OP, Mors O, Mortensen PB (2009) Common variants conferring risk of schizophrenia. Nature 460(7256):744–747

    PubMed  CAS  Google Scholar 

  • Stothard P, Choi JW, Basu U, Sumner-Thomson JM, Meng Y, Liao XP, Moore SS (2011) Whole genome resequencing of Black Angus and Holstein cattle for SNP and CNV discovery. BMC Genomics 12:559

    Article  PubMed  CAS  Google Scholar 

  • Sun JJ, Xue J, Zhang CL, Lan XY, Lei CZ, Chen H (2012) Haplotype combination of the caprine PC1 gene sequence variants and association with growth traits in Chinese Haimen breed. J Genet 91(1):E54–E59

    PubMed  Google Scholar 

  • Terai T, Nishimura N, Kanda I, Yasui N, Sasaki T (2006) JRAB/MICAL-L2 is a junctional Rab13-binding protein mediating the endocytic recycling of occludin. Mol Biol Cell 17(5):2465–2475

    Article  PubMed  CAS  Google Scholar 

  • Wang XF, Nahashon S, Feaster TK, Bohannon-Stewart A, Adefope N (2010) An initial map of chromosomal segmental copy number variations in the chicken. BMC Genomics 11:351

    Article  PubMed  Google Scholar 

  • Wang JY, Jiang JC, Fu WX, Jiang L, Ding XD, Liu JF, Zhang Q (2012a) A genome-wide detection of copy number variations using SNP genotyping arrays in swine. BMC Genomics 13:273

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Gu X, Feng C, Song C, Hu X, Li N (2012b) A genome-wide survey of copy number variation regions in various chicken breeds by array comparative genomic hybridization method. Anim Genet 43(3):282–289

    Article  PubMed  CAS  Google Scholar 

  • Wong KK, deLeeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, Horsman DE, MacAulay C, Ng RT, Brown CJ, Eichler EE et al (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80(1):91–104

    Article  PubMed  CAS  Google Scholar 

  • Wright D, Boije H, Meadows JR, Bed’hom B, Gourichon D, Vieaud A, Tixier-Boichard M, Rubin C-J, Imsland F, Hallböök F (2009) Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in chickens. PLoS Genet 5(6):e1000512

    Article  PubMed  Google Scholar 

  • Xu Y, Liu J, Lan X, Zhang Y, Lei C, Zhang C, Yang D, Chen H (2011) Consistent effects of single and combined SNP(s) within bovine paired box 7 gene (Pax7) on growth traits. J Genet 90(2):E53–E57

    PubMed  Google Scholar 

  • Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan XC, Nellaker C, Goodstadt L, Nicod J, Bhomra A et al (2011) Sequence-based characterization of structural variation in the mouse genome. Nature 477(7364):326–329

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Gu W, Hurles ME, Lupski JR (2009) Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 10(1):451–481

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 31272408 and 31101703), Program of National Beef Cattle Industrial Technology System (CARS-38), Agricultural Science and Technology Innovation Projects of Shaanxi Province (No. 2012NKC01-13), and Natural Science Foundation of Jiangsu Province (BK2011206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Zhang, L., Shi, T. et al. Copy number variations of MICAL-L2 shaping gene expression contribute to different phenotypes of cattle. Mamm Genome 24, 508–516 (2013). https://doi.org/10.1007/s00335-013-9483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-013-9483-x

Keywords

Navigation