Skip to main content
Log in

Genome-scale gene expression characteristics define the follicular initiation and developmental rules during folliculogenesis

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The ovarian follicle supplies a unique dynamic system for gametes that ensures the propagation of the species. During folliculogenesis, the vast majority of the germ cells are lost or inactivated because of ovarian follicle atresia, resulting in diminished reproductive potency and potential infertility. Understanding the underlying molecular mechanism of folliculogenesis rules is essential. Primordial (P), preantral (M), and large antral (L) porcine follicles were used to reveal their genome-wide gene expression profiles. Results indicate that primordial follicles (P) process a diverse gene expression pattern compared to growing follicles (M and L). The 5,548 differentially expressed genes display a similar expression mode in M and L, with a correlation coefficient of 0.892. The number of regulated (both up and down) genes in M is more than that in L. Also, their regulation folds in M (2–364-fold) are much more acute than in L (2–75-fold). Differentially expressed gene groups with different regulation patterns in certain follicular stages are identified and presumed to be closely related following follicular developmental rules. Interestingly, functional annotation analysis revealed that these gene groups feature distinct biological processes or molecular functions. Moreover, representative candidate genes from these gene groups have had their RNA or protein expressions within follicles confirmed. Our study emphasized genome-scale gene expression characteristics, which provide novel entry points for understanding the folliculogenesis rules on the molecular level, such as follicular initiation, atresia, and dominance. Transcriptional regulatory circuitries in certain follicular stages are expected to be found among the identified differentially expressed gene groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiyama K, Senshu T (1999) Dynamic aspects of protein deimination in developing mouse epidermis. Exp Dermatol 8:177–186

    Article  PubMed  Google Scholar 

  • Barnett KR, Schilling C, Greenfeld CR, Tomic D, Flaws JA (2006) Ovarian follicle development and transgenic mouse models. Hum Reprod Update 12:537–555

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Matzuk MM (2001) Smad5 is required for mouse primordial germ cell development. Mech Dev 104:61–67

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 23:787–823

    Article  PubMed  CAS  Google Scholar 

  • Chun SY, McGee EA, Hsu SY, Minami S, LaPolt PS, Yao HH, Bahr JM, Gougeon A, Schomberg DW, Hsueh AJ (1999) Restricted expression of WT1 messenger ribonucleic acid in immature ovarian follicles: uniformity in mammalian and avian species and maintenance during reproductive senescence. Biol Reprod 60:365–373

    Article  PubMed  CAS  Google Scholar 

  • Coonrod S, Vitale A, Duan C, Bristol-Gould S, Herr J, Goldberg E (2006) Testis-specific lactate dehydrogenase (LDH-C4; Ldh3) in murine oocytes and preimplantation embryos. J Androl 27:502–509

    Article  PubMed  CAS  Google Scholar 

  • Dissen GA, Romero C, Hirshfield AN, Ojeda SR (2001) Nerve growth factor is required for early follicular development in the mammalian ovary. Endocrinology 142:2078–2086

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Fortune JE (1994) Ovarian follicular growth and development in mammals. Biol Reprod 50:225–232

    Article  PubMed  CAS  Google Scholar 

  • Herschman HR (1991) Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 60:281–319

    Article  PubMed  CAS  Google Scholar 

  • Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101

    Article  PubMed  CAS  Google Scholar 

  • Hsu SY, Kubo M, Chun SY, Haluska FG, Housman DE, Hsueh AJ (1995) Wilms’ tumor protein WT1 as an ovarian transcription factor: decreases in expression during follicle development and repression of inhibin-alpha gene promoter. Mol Endocrinol 9:1356–1366

    Article  PubMed  CAS  Google Scholar 

  • Hsueh AJ, Billig H, Tsafriri A (1994) Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev 15:707–724

    PubMed  CAS  Google Scholar 

  • Ingman WV, Robker RL, Woittiez K, Robertson SA (2006) Null mutation in transforming growth factor beta1 disrupts ovarian function and causes oocyte incompetence and early embryo arrest. Endocrinology 147:835–845

    Article  PubMed  CAS  Google Scholar 

  • Ingraham HA, Hirokawa Y, Roberts LM, Mellon SH, McGee E, Nachtigal MW, Visser JA (2000) Autocrine and paracrine Mullerian inhibiting substance hormone signaling in reproduction. Recent Prog Horm Res 55:53–67 discussion 67-58

    PubMed  CAS  Google Scholar 

  • Irusta G, Parborell F, Peluffo M, Manna PR, Gonzalez-Calvar SI, Calandra R, Stocco DM, Tesone M (2003) Steroidogenic acute regulatory protein in ovarian follicles of gonadotropin-stimulated rats is regulated by a gonadotropin-releasing hormone agonist. Biol Reprod 68:1577–1583

    Article  PubMed  CAS  Google Scholar 

  • Jablonka-Shariff A, Olson LM (1998) The role of nitric oxide in oocyte meiotic maturation and ovulation: meiotic abnormalities of endothelial nitric oxide synthase knock-out mouse oocytes. Endocrinology 139:2944–2954

    Article  PubMed  CAS  Google Scholar 

  • Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL (2004) Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428:145–150

    Article  PubMed  CAS  Google Scholar 

  • Juengel JL, Hudson NL, Heath DA, Smith P, Reader KL, Lawrence SB, O’Connell AR, Laitinen MP, Cranfield M, Groome NP, Ritvos O, McNatty KP (2002) Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol Reprod 67:1777–1789

    Article  PubMed  CAS  Google Scholar 

  • Latham KE, Wigglesworth K, McMenamin M, Eppig JJ (2004) Stage-dependent effects of oocytes and growth differentiation factor 9 on mouse granulosa cell development: advance programming and subsequent control of the transition from preantral secondary follicles to early antral tertiary follicles. Biol Reprod 70:1253–1262

    Article  PubMed  CAS  Google Scholar 

  • Liu HZ, Liu YX (2000) Localization of orphan receptor TR3 mRNA in early developmental follicles in rat. Chinese Sci Bull 45:1122–1127

    Article  CAS  Google Scholar 

  • Macklon NS, Fauser BC (1999) Aspects of ovarian follicle development throughout life. Horm Res 52:161–170

    Article  PubMed  CAS  Google Scholar 

  • Markholt S, Grondahl ML, Ernst EH, Andersen CY, Ernst E, Lykke-Hartmann K (2012) Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction. Mol Hum Reprod 18:96–110

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Tsukada T, Ohkura N, Bandoh S, Hosono T, Yamaguchi K (1998) The NGFI-B subfamily of the nuclear receptor superfamily (review). Int J Oncol 12:1237–1243

    PubMed  CAS  Google Scholar 

  • McLaren A (1999) Signaling for germ cells. Genes Dev 13:373–376

    Article  PubMed  CAS  Google Scholar 

  • Morbeck DE, Esbenshade KL, Flowers WL, Britt JH (1992) Kinetics of follicle growth in the prepubertal gilt. Biol Reprod 47:485–491

    Article  PubMed  CAS  Google Scholar 

  • Nakamura I, Evans JC, Kusakabe M, Nagahama Y, Young G (2005) Changes in steroidogenic enzyme and steroidogenic acute regulatory protein messenger RNAs in ovarian follicles during ovarian development of rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 144:224–231

    Article  PubMed  CAS  Google Scholar 

  • Shi K, Yuan X, Du L, Pan D, Zhang Y, Zhao Y, Deng X, Hu X, Wu C, Li N (2007) Advanced methods of isolation and identification of porcine primordial follicles. Anim Reprod Sci 101:163–171

    Article  PubMed  Google Scholar 

  • Skinner MK (2005) Regulation of primordial follicle assembly and development. Hum Reprod Update 11:461–471

    Article  PubMed  Google Scholar 

  • Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96:2907–2912

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Fu Z, Zhang M, Xia G, Yang J, Xie H (2004) Immunohistochemical localization of inducible and endothelial nitric oxide synthase in porcine ovaries and effects of NO on antrum formation and oocyte meiotic maturation. Mol Cell Endocrinol 222:93–103

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Xie H, Hong H, Chen X, Jang J, Xia G (2005) Effects of nitric oxide synthase inhibitors on porcine oocyte meiotic maturation. Zygote 13:1–9

    Article  PubMed  CAS  Google Scholar 

  • Tilly JL, Kowalski KI, Johnson AL, Hsueh AJ (1991) Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 129:2799–2801

    Article  PubMed  CAS  Google Scholar 

  • Tremblay KD, Dunn NR, Robertson EJ (2001) Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128:3609–3621

    PubMed  CAS  Google Scholar 

  • Wansa KD, Harris JM, Yan G, Ordentlich P, Muscat GE (2003) The AF-1 domain of the orphan nuclear receptor NOR-1 mediates trans-activation, coactivator recruitment, and activation by the purine anti-metabolite 6-mercaptopurine. J Biol Chem 278:24776–24790

    Article  PubMed  CAS  Google Scholar 

  • Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC, Hao Z, Jayes FC, Bush LA, Shetty J, Shore AN, Reddi PP, Tung KS, Samy E, Allietta MM, Sherman NE, Herr JC, Coonrod SA (2003) ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 256:73–88

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Matzuk MM (2002) GDF-9 and BMP-15: oocyte organizers. Rev Endocr Metab Disord 3:27–32

    Article  PubMed  Google Scholar 

  • Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ (2000) Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 14:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Dai J, Zhao E, Lin Y, Zeng L, Chen J, Zheng H, Wang Y, Li X, Ying K, Xie Y, Mao Y (2004) cDNA cloning, gene organization and expression analysis of human peptidylarginine deiminase type VI. Acta Biochim Pol 51:1051–1058

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (2011CBA01001, 2009CB941003) and the National Transgenic Breeding Project of China (2011ZX08009-003-006). We are grateful to Prof. Changxin Wu (College of Animal Science and Technology, University of Agricultural University) for his valuable advice with data analysis and manuscript preparation. We thank Drs. Zhang MeiJia, Fu MaoYong, Tao Yong, Li HuiFeng, and Zhang Jin for their critical discussion and advice, and Drs. Xu Wenying, Yan Hong, and Feng Jidong for their technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, K., He, F., Yuan, X. et al. Genome-scale gene expression characteristics define the follicular initiation and developmental rules during folliculogenesis. Mamm Genome 24, 266–275 (2013). https://doi.org/10.1007/s00335-013-9461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-013-9461-3

Keywords

Navigation