Skip to main content

Advertisement

Log in

Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Type 1 diabetes (T1D) is an autoimmune disease that has increased two- to threefold over the past half century by as yet unknown means. It is generally accepted that T1D is the result of gene–environment interactions, but such rapid increases in incidence are not explained by Mendelian inheritance. There have been numerous advances in our knowledge of the pathogenesis of T1D. Indeed, there has been a large number of genes identified that contribute to risk for this disease and several environmental factors have been proposed. The complexity of such interactions is yet to be understood for any major chronic disease. Epigenetic regulation is one way to explain the rapid increase in incidence and could be a central mechanism by which environmental factors influence development of diabetes. However, there is remarkably little known about the contribution of epigenetics to T1D pathogenesis. Here we speculate on various candidate processes and molecules of the immune and endocrine systems that could modify risk for T1D through epigenetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu-Lebdeh HS, Barazzoni R, Meek SE, Bigelow ML, Persson XM et al (2006) Effects of insulin deprivation and treatment on homocysteine metabolism in people with type 1 diabetes. J Clin Endocrinol Metab 91:3344–3348

    CAS  PubMed  Google Scholar 

  • Agarwal S, Rao A (1998) Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9:765–775

    CAS  PubMed  Google Scholar 

  • Arany E, Strutt B, Romanus P, Remacle C, Reusens B et al (2004) Taurine supplement in early life altered islet morphology, decreased insulitis and delayed the onset of diabetes in non-obese diabetic mice. Diabetologia 47:1831–1837

    CAS  PubMed  Google Scholar 

  • Aune TM, Collins PL, Chang S (2009) Epigenetics and T helper 1 differentiation. Immunology 126:299–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babu DA, Deering TG, Mirmira RG (2007) A feat of metabolic proportions: Pdx1 orchestrates islet development and function in the maintenance of glucose homeostasis. Mol Genet Metab 92:43–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballas ZK (1984) The use of 5-azacytidine to establish constitutive interleukin 2-producing clones of the EL4 thymoma. J Immunol 133:7–9

    CAS  PubMed  Google Scholar 

  • Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    CAS  PubMed  Google Scholar 

  • Bennett-Baker PE, Wilkowski J, Burke DT (2003) Age-associated activation of epigenetically repressed genes in the mouse. Genetics 165:2055–2062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman Y, Cedar H (2004) A stepwise epigenetic process controls immunoglobulin allelic exclusion. Nat Rev Immunol 4:753–761

    CAS  PubMed  Google Scholar 

  • Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655

    CAS  PubMed  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    CAS  PubMed  Google Scholar 

  • Bird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA et al (1998) Helper T cell differentiation is controlled by the cell cycle. Immunity 9:229–237

    CAS  PubMed  Google Scholar 

  • Bjornsson HT, Cui H, Gius D, Fallin MD, Feinberg AP (2004) The new field of epigenomics: implications for cancer and other common disease research. Cold Spring Harb Symp Quant Biol 69:447–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boujendar S, Arany E, Hill D, Remacle C, Reusens B (2003) Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularization of the fetal endocrine pancreas. J Nutr 133:2820–2825

    CAS  PubMed  Google Scholar 

  • Chakrabarti SK, Francis J, Ziesmann SM, Garmey JC, Mirmira RG (2003) Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J Biol Chem 278:23617–23623

    CAS  PubMed  Google Scholar 

  • Chamson-Reig A, Arany EJ, Summers K, Hill DJ (2009) A low protein diet in early life delays the onset of diabetes in the non-obese diabetic mouse. J Endocrinol 201:231–239

    CAS  PubMed  Google Scholar 

  • Chiang EP, Wang YC, Chen WW, Tang FY (2009) Effects of insulin and glucose on cellular metabolic fluxes in homocysteine transsulfuration, remethylation, S-adenosylmethionine synthesis, and global deoxyribonucleic acid methylation. J Clin Endocrinol Metab 94:1017–1025

    CAS  PubMed  Google Scholar 

  • Cooney CA (1993) Are somatic cells inherently deficient in methylation metabolism? A proposed mechanism for DNA methylation loss, senescence and aging. Growth Dev Aging 57:261–273

    CAS  PubMed  Google Scholar 

  • Deering TG, Ogihara T, Trace AP, Maier B, Mirmira RG (2009) Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes. Diabetes 58:185–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dicker-Brown A, Fonseca VA, Fink LM, Kern PA (2001) The effect of glucose and insulin on the activity of methylene tetrahydrofolate reductase and cystathionine-beta-synthase: studies in hepatocytes. Atherosclerosis 158:297–301

    CAS  PubMed  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104:13056–13061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5:219–226

    CAS  PubMed  Google Scholar 

  • Floess S, Freyer J, Siewert C, Baron U, Olek S et al (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5:e38

    PubMed  PubMed Central  Google Scholar 

  • Fonseca V, Dicker-Brown A, Ranganathan S, Song W, Barnard RJ et al (2000) Effects of a high-fat-sucrose diet on enzymes in homocysteine metabolism in the rat. Metabolism 49:736–741

    CAS  PubMed  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    CAS  PubMed  Google Scholar 

  • Fourlanos S, Varney MD, Tait BD, Morahan G, Honeyman MC et al (2008) The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 31:1546–1549

    PubMed  PubMed Central  Google Scholar 

  • Fox JT, Stover PJ (2008) Folate-mediated one-carbon metabolism. Vitam Horm 79:1–44

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francis J, Chakrabarti SK, Garmey JC, Mirmira RG (2005) Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. J Biol Chem 280:36244–36253

    CAS  PubMed  Google Scholar 

  • Gillespie KM, Bain SC, Barnett AH, Bingley PJ, Christie MR et al (2004) The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Lancet 364:1699–1700

    PubMed  Google Scholar 

  • Gursu MF, Baydas G, Cikim G, Canatan H (2002) Insulin increases homocysteine levels in a dose-dependent manner in diabetic rats. Arch Med Res 33:305–307

    CAS  PubMed  Google Scholar 

  • Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    CAS  PubMed  Google Scholar 

  • Hatton RD, Harrington LE, Luther RJ, Wakefield T, Janowski KM et al (2006) A distal conserved sequence element controls Ifng gene expression by T cells and NK cells. Immunity 25:717–729

    CAS  PubMed  Google Scholar 

  • Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J (2003) Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes 52:1052–1055

    CAS  PubMed  Google Scholar 

  • Jacobs RL, House JD, Brosnan ME, Brosnan JT (1998) Effects of streptozotocin-induced diabetes and of insulin treatment on homocysteine metabolism in the rat. Diabetes 47:1967–1970

    CAS  PubMed  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    CAS  PubMed  Google Scholar 

  • Janson PC, Winerdal ME, Marits P, Thorn M, Ohlsson R et al (2008) FOXP3 promoter demethylation reveals the committed Treg population in humans. PLoS ONE 3:e1612

    PubMed  PubMed Central  Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones B, Chen J (2006) Inhibition of IFN-gamma transcription by site-specific methylation during T helper cell development. EMBO J 25:2443–2452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai Y, Hirohashi S (2007) Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis 28:2434–2442

    CAS  PubMed  Google Scholar 

  • Kauri LM, Wang GS, Patrick C, Bareggi M, Hill DJ et al (2007) Increased islet neogenesis without increased islet mass precedes autoimmune attack in diabetes-prone rats. Lab Invest 87:1240–1251

    CAS  PubMed  Google Scholar 

  • Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204:1543–1551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knip M, Siljander H (2008) Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev 7:550–557

    CAS  PubMed  Google Scholar 

  • Knip M, Veijola R, Virtanen SM, Hyoty H, Vaarala O et al (2005) Environmental triggers and determinants of type 1 diabetes. Diabetes 54(Suppl 2):S125–S136

    CAS  PubMed  Google Scholar 

  • Lal G, Zhang N, van der Touw W, Ding Y, Ju W et al (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182:259–273

    CAS  PubMed  Google Scholar 

  • Lee DU, Agarwal S, Rao A (2002) Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16:649–660

    CAS  PubMed  Google Scholar 

  • Lefebvre DE, Powell KL, Strom A, Scott FW (2006) Dietary proteins as environmental modifiers of type 1 diabetes mellitus. Annu Rev Nutr 26:175–202

    CAS  PubMed  Google Scholar 

  • Lu Q, Ray D, Gutsch D, Richardson B (2002) Effect of DNA methylation and chromatin structure on ITGAL expression. Blood 99:4503–4508

    CAS  PubMed  Google Scholar 

  • Makar KW, Wilson CB (2004) DNA methylation is a nonredundant repressor of the Th2 effector program. J Immunol 173:4402–4406

    CAS  PubMed  Google Scholar 

  • Matveyenko AV, Butler PC (2008) Relationship between beta-cell mass and diabetes onset. Diabetes Obes Metab 10(Suppl 4):23–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazza A, Bossone E, Mazza F, Distante A (2005) Reduced serum homocysteine levels in type 2 diabetes. Nutr Metab Cardiovasc Dis 15:118–124

    PubMed  Google Scholar 

  • Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melvin AJ, McGurn ME, Bort SJ, Gibson C, Lewis DB (1995) Hypomethylation of the interferon-gamma gene correlates with its expression by primary T-lineage cells. Eur J Immunol 25:426–430

    CAS  PubMed  Google Scholar 

  • Miao F, Wu X, Zhang L, Yuan YC, Riggs AD et al (2007) Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J Biol Chem 282:13854–13863

    CAS  PubMed  Google Scholar 

  • Miao F, Smith DD, Zhang L, Min A, Feng W et al (2008) Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57:3189–3198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14 Spec No 1:R47–R58

    CAS  PubMed  Google Scholar 

  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    CAS  PubMed  Google Scholar 

  • Mutskov V, Raaka BM, Felsenfeld G, Gershengorn MC (2007) The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells 25:3223–3233

    CAS  PubMed  Google Scholar 

  • Natoli G, Saccani S, Bosisio D, Marazzi I (2005) Interactions of NF-kappaB with chromatin: the art of being at the right place at the right time. Nat Immunol 6:439–445

    CAS  PubMed  Google Scholar 

  • Norris JM, Barriga K, Klingensmith G, Hoffman M, Eisenbarth GS et al (2003) Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290:1713–1720

    CAS  PubMed  Google Scholar 

  • Park H, Li Z, Yang XO, Chang SH, Nurieva R et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G, EURODIAB Study Group (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373:2027–2033

    PubMed  Google Scholar 

  • Peng SL (2006) The T-box transcription factor T-bet in immunity and autoimmunity. Cell Mol Immunol 3:87–95

    CAS  PubMed  Google Scholar 

  • Rathmell JC, Newgard CB (2009) Biochemistry. A glucose-to-gene link. Science 324:1021–1022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnam S, Maclean KN, Jacobs RL, Brosnan ME, Kraus JP et al (2002) Hormonal regulation of cystathionine beta-synthase expression in liver. J Biol Chem 277:42912–42918

    CAS  PubMed  Google Scholar 

  • Redondo MJ, Rewers M, Yu L, Garg S, Pilcher CC et al (1999) Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. BMJ 318:698–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redondo MJ, Jeffrey J, Fain PR, Eisenbarth GS, Orban T (2008) Concordance for islet autoimmunity among monozygotic twins. N Engl J Med 359:2849–2850

    CAS  PubMed  Google Scholar 

  • Richardson B (1986) Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4+ cells. Hum Immunol 17:456–470

    CAS  PubMed  Google Scholar 

  • Richardson BC, Strahler JR, Pivirotto TS, Quddus J, Bayliss GE et al (1992) Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T cell subset in patients with active systemic lupus erythematosus. Arthritis Rheum 35:647–662

    CAS  PubMed  Google Scholar 

  • Saccani S, Natoli G (2002) Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes Dev 16:2219–2224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saccani S, Pantano S, Natoli G (2001) Two waves of nuclear factor kappaB recruitment to target promoters. J Exp Med 193:1351–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saccani S, Pantano S, Natoli G (2002) p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol 3:69–75

    CAS  PubMed  Google Scholar 

  • Santangelo S, Cousins DJ, Winkelmann NE, Staynov DZ (2002) DNA methylation changes at human Th2 cytokine genes coincide with DNase I hypersensitive site formation during CD4(+) T cell differentiation. J Immunol 169:1893–1903

    CAS  PubMed  Google Scholar 

  • Sawalha AH (2008) Epigenetics and T-cell immunity. Autoimmunity 41:245–252

    CAS  PubMed  Google Scholar 

  • Sgouroudis E, Piccirillo CA (2009) Control of type 1 diabetes by CD4+Foxp3+ regulatory T cells: lessons from mouse models and implications for human disease. Diabetes Metab Res Rev 25:208–218

    CAS  PubMed  Google Scholar 

  • Ushijima T, Watanabe N, Okochi E, Kaneda A, Sugimura T et al (2003) Fidelity of the methylation pattern and its variation in the genome. Genome Res 13:868–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GS, Rosenberg L, Scott FW (2005) Tubular complexes as a source for islet neogenesis in the pancreas of diabetes-prone BB rats. Lab Invest 85:675–688

    CAS  PubMed  Google Scholar 

  • Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388

    CAS  PubMed  Google Scholar 

  • Wei G, Wei L, Zhu J, Zang C, Hu-Li J et al (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30:155–167

    PubMed  PubMed Central  Google Scholar 

  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson CB, Rowell E, Sekimata M (2009) Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol 9:91–105

    CAS  PubMed  Google Scholar 

  • Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486

    CAS  PubMed  Google Scholar 

  • Wulfing C, Sumen C, Sjaastad MD, Wu LC, Dustin ML et al (2002) Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat Immunol 3:42–47

    CAS  PubMed  Google Scholar 

  • Yatabe Y, Tavare S, Shibata D (2001) Investigating stem cells in human colon by using methylation patterns. Proc Natl Acad Sci U S A 98:10839–10844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 26:229–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E (2003) Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 290:1721–1728

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Studies in the laboratory of FWS have been supported by the Juvenile Diabetes Research Foundation, Canadian Institutes of Health Research, and Canadian Diabetes Association. AJM is supported by Health Canada. AS is a Juvenile Diabetes Research Foundation Postdoctoral Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amanda J. MacFarlane or Fraser W. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacFarlane, A.J., Strom, A. & Scott, F.W. Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome 20, 624–632 (2009). https://doi.org/10.1007/s00335-009-9213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9213-6

Keywords

Navigation