Skip to main content
Log in

Genetic analysis of the LEW.1AR1-iddm rat: an animal model for spontaneous diabetes mellitus

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The LEW.1AR1-iddm/Ztm rat is a new animal model of type 1 diabetes mellitus, which shows an autosomal recessive mode of inheritance for the diabetes-inducing gene. The aim of this study was to define predisposing loci of the diabetic syndrome by linkage analysis using microsatellite markers. A backcross population of 218 rats (BN × LEW.1AR1-iddm) × LEW.1AR1-iddm was analyzed using 157 polymorphic microsatellite markers covering the entire genome. Three genomic regions showed a significant linkage to the diabetic syndrome. The first susceptibility locus on rat Chromosome (RNO) 1 (LOD score 4.13) mapped to the region 1q51–55, which codes for potential candidate genes like Ins1 and Nkx2-3. The second susceptibility locus was also localized on RNO1 in the centromeric region 1p11 (LOD score 2.7) encompassing the Sod2 gene. The third quantitative trait loci (LOD score 2.97) was located on RNO20 within the major histocompatibility complex region. Comparative mapping revealed that the homologous regions in the human genome contain the IDDM loci 1, 5, 8, and 17. The identification of diabetes susceptibility regions of the genetically uniform LEW.1AR1-iddm rat strain will pave the way toward a detailed characterization of the loci conferring diabetes development as well as their functional relevance for the pathogenesis of type 1 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aaltonen J, Horelli–Kuitunen N, Fan JB, Bjorses P, Perheentupa J, et al. (1997) High-resolution physical and transcriptional mapping of the autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy locus on chromosome 21q22.3 by FISH. Genome Res 7, 820–829

    Google Scholar 

  • Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, et al. (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298: 1395–1401

    PubMed  Google Scholar 

  • Azevedo–Martins AK, Lortz S, Lenzen S, Curi R, Eizirik DL, et al. (2003) Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-kappaB activation in insulin-producing cells. Diabetes 52: 93–101

    PubMed  Google Scholar 

  • Babu SR, Bao F, Roberts CM, Martin AK, Gowan K, et al. (2003) Caspase 7 is a positional candidate gene for IDDM 17 in a Bedouin Arab family. Ann N Y Acad Sci 1005: 340–343

    Article  PubMed  Google Scholar 

  • Bach JF (1994) Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 15: 516–542

    PubMed  Google Scholar 

  • Bach JF, Garchon HJ, van Endert P (2001) Genetics of human type 1 diabetes mellitus. Curr Dir Autoimmun 4: 1–30

    PubMed  Google Scholar 

  • Barrett AJ, Rawlings ND (2001) Evolutionary lines of cysteine peptidases. Biol Chem 382: 727–733

    Article  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890

    Article  PubMed  Google Scholar 

  • Buschard K (1996) Diabetic animal models. APMIS 104: 609–614

    PubMed  Google Scholar 

  • Chappel CI, Chappel WR (1983) The discovery and development of the BB rat colony: an animal model of spontaneous diabetes mellitus. Metabolism 32: 8–10

    PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971

    PubMed  Google Scholar 

  • Chwalisz WT, Koelsch BU, Kindler–Röhrborn A, Hedrich HJ, Wedekind D (2003) The circling behaviour of the deafblind LEW-ci2 rat is linked to a segment of RNO10 containing Myo15 and Kcnj12. Mamm Genome 14: 620–627

    Article  PubMed  Google Scholar 

  • Colle E, Guttmann RD, Seemayer T (1981) Spontaneous diabetes mellitus syndrome in the rat. I. Association with the major histocompatibility complex. J Exp Med 154: 1237–1242

    Article  PubMed  Google Scholar 

  • Colle E, Guttmann RD, Fuks A (1986) Insulin-dependent diabetes mellitus is associated with genes that map to the right of the class I RT1.A locus of the major histocompatibility complex of the rat. Diabetes 35: 454–458

    PubMed  Google Scholar 

  • Cordell HJ, Todd JA (1995) Multifactorial inheritance in type 1 diabetes. Trends Genet 11: 499–504

    Article  PubMed  Google Scholar 

  • Crisa L, Mordes JP, Rossini AA (1992) Autoimmune diabetes mellitus in the BB rat. Diabetes Metab Rev 8: 4–37

    PubMed  Google Scholar 

  • Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, et al. (1994) A genome-wide search for human type 1 diabetes susceptibility genes. Nature 37: 130–136

    Article  Google Scholar 

  • Davies JL, Cucca F, Goy JV, Atta ZA, Merriman ME, et al. (1996) Saturation multipoint linkage mapping of chromosome 6q in type 1 diabetes. Hum Mol Genet 5: 1071–1074

    Article  PubMed  Google Scholar 

  • Ellerman KE, Like AA (1995) A major histocompatibility complex class n restriction for BioBreeding/Worcester diabetes-inducing T cells. J Exp Med 182: 923–930

    Article  PubMed  Google Scholar 

  • Ellerman KE, Like AA (2000) Susceptibility to diabetes is widely distributed in normal class IIu haplotype rats. Diabetologia 43: 890–898

    Article  PubMed  Google Scholar 

  • Feraandes–Alnemri T, Takahashi A, Armstrong R, Krebs J, Fritz L, et al. (1995) Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res 55: 6045–6052

    PubMed  Google Scholar 

  • Hattori M, Buse JB, Jackson RA, Glimcher L, Dorf ME, et al. (1986) The NOD mouse: recessive diabetogenic gene in the major histocompatibility complex. Science 231: 733–735

    PubMed  Google Scholar 

  • Hedrich HJ (1990) Genetic monitoring of inbred strains of rat (Stuttgart: Gustav Fischer Verlag)

    Google Scholar 

  • Hornum L, Romer J, Markholst H (2002) The diabetes-prone BB rat carries a frameshift mutation in Ian4, a positional candidate of Iddm1. Diabetes 51: 1972–1979

    PubMed  Google Scholar 

  • Hornum L, DeScipio C, Markholst H, Troutman SA, Novak S, et al. (2004) Comparative mapping of rat Iddm4 to segments on HSA7 and MMU6. Mamm Genome 15: 53–61

    Article  PubMed  Google Scholar 

  • Jacob HJ, Pettersson A, Wilson D, Mao Y, Lemmark A, et al. (1992) Genetic dissection of autoimmune type I diabetes in the BB rat. Nat Genet 2: 56–60

    Article  PubMed  Google Scholar 

  • Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, et al. (1991) New inbred strain of Long–Evans–Tokushima lean rats with IDDM without lymphopenia. Diabetes 40: 1375–1381

    PubMed  Google Scholar 

  • Klaff LS, Koike G, Jiang J, Wang Y, Bieg S, et al. (1999) BB rat diabetes susceptibility and body weight regulation genes colocalize on chromosome 2. Mamm Genome 10: 883–887

    Article  PubMed  Google Scholar 

  • Klöting I, Kovacs P (1998) Phenotypic differences between diabetes-prone BB rat sublines cosegregate with loci on chromosomes X and 10. Biochem Mol Biol Int 45: 865–870

    PubMed  Google Scholar 

  • Klöting I, Vogt L, Serikawa T (1995) Locus on chromosome 18 cosegregates with diabetes in the BB/OK rat subline. Diabetes Metab 21: 338–344

    Google Scholar 

  • Klöting I, Schmidt S, Kovacs P (1998a) Mapping of novel genes predisposing or protecting diabetes development in the BB/OK rat. Biochem Biophys Res Commun 245: 483–486

    Article  Google Scholar 

  • Klöting II, van den Brandt J, Kovacs P (1998b) Quantitative trait loci for blood glucose confirm diabetes predisposing and protective genes, Iddm4 and Iddm5r, in the spontaneously diabetic BB/OK rat. Int J Mol Med 2 597–601

    Google Scholar 

  • Klöting I, van den Brandt J, Kloting N, Radovic B (2003) Alleles of diabetes-resistant BN rats contribute to insulin-dependent type 1 diabetes mellitus. J Autoimmun 20 119–123

    Article  PubMed  Google Scholar 

  • Lader E, Ha HS, O’Neill M, Artzt K, Bennett D (1989) tctex-1: a candidate gene family for a mouse t complex sterility locus. Cell 58 969–979

    Article  PubMed  Google Scholar 

  • Lally FJ, Bone AJ (2003) Animal models of type 1 diabetes. In: Textbook of Diabetes, Pickup JC, Williams G, eds. (Oxford: Blackwell Scienific Publications), pp 19.1–19.7

  • Lally FJ, Bone AJ (2003) Animal models of type 1 diabetes. In Pickup JC, Williams G, eds. Textbook of Diabetes (Oxford: Blackwell Scienific Publications), p 2

    Article  PubMed  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11: 241–247

    Article  PubMed  Google Scholar 

  • Leiter EH, Prochazka M, Coleman DL (1987) The non-obese diabetic (NOD) mouse. Am J Pathol 128: 380–383

    PubMed  Google Scholar 

  • Leiter EH, Serreze DV, Prochazka M (1990) The genetics and epidemiology of diabetes in NOD mice. Immunol Today 11: 147–149

    Article  PubMed  Google Scholar 

  • Lenzen S, Tiedge M, Elsner M, Lortz S, Weiss H, et al. (2001) The LEW.1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus. Diabetologia 44: 1189–1196

    Article  PubMed  Google Scholar 

  • Leroux L, Desbois P, Lamotte L, Duvillie B, Cordonnier N, et al. (2001) Compensatory responses in mice carrying a null mutation for Ins1 or Ins2. Diabetes 50 Suppl 1: S150–153

    PubMed  Google Scholar 

  • Lomedico P, Rosenthal N, Efstratidadis A, Gilbert W, Kolodner R, et al. (1979) The structure and evolution of the two nonallelic rat preproinsulin genes. Cell 18: 545–558

    Article  PubMed  Google Scholar 

  • Luo DF, Bui MM, Muir A, Maclaren NK, Thomson G, et al. (1995) Affected-sib-pair mapping of a novel susceptibility gene to insulin-dependent diabetes mellitus (IDDM8) on chromosome 6q25–q27. Am J Hum Genet 57: 911–919

    PubMed  Google Scholar 

  • Luo DF, Buzzetti R, Rotter JI, Maclaren NK, Raffel LJ, et al. (1996) Confirmation of three susceptibility genes to insulin-dependent diabetes mellitus: IDDM4, IDDM5 and FDDM8. Hum Mol Genet 5: 693–698

    Article  PubMed  Google Scholar 

  • MacMurray AJ, Moralejo DH, Kwitek AE, Rutledge EA, Van Yserloo B, et al. (2002) Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene. Genome Res 12: 1029–1039

    Article  PubMed  Google Scholar 

  • Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, et al. (1980) Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 29: 1–13

    PubMed  Google Scholar 

  • Martin AM, Blankenhorn EP, Maxson MN, Zhao M, Leif J, et al. (1999a) Non-major histocompatibility complex-linked diabetes susceptibility loci on chromosomes 4 and 13 in a backcross of the DP-BB/Wor rat to the WF rat. Diabetes 48: 50–58

    Google Scholar 

  • Martin AM, Maxson MN, Leif J, Mordes JP, Greiner DL, et al. (1999b) Diabetes-prone and diabetes-resistant BB rats share a common major diabetes susceptibility locus, iddm4: additional evidence for a “universal autoimmunity locus” on rat chromosome 4. Diabetes 48: 2138–2144

    Google Scholar 

  • McDuffie M (1998) Genetics of autoimmune diabetes in animal models. Curr Opin Lnmunol 10: 704–709

    Article  Google Scholar 

  • McMahon AP (2000) Neural patterning: the role of Nkx genes in the ventral spinal cord. Genes Dev 14: 2261–2264

    Article  PubMed  Google Scholar 

  • Mori M, Ishizaki K, Serikawa T, Yamada J (1992) Localization of the rat insulin I gene (INS1) to chromosome Iq55 by fluorescence in situ hybridization. Cytogenet Cell Genet 59: 31–33

    PubMed  Google Scholar 

  • Nagamine k, Peterson P, Scott HS, Kudoh J, Minoshima S, et al. (1997) Positional cloning of the APECED gene. Nat Genet 17: 393–398

    Article  PubMed  Google Scholar 

  • Nicklas W, Baneux P, Boot R, Decelle T, Deeny AA, et al. (2002) Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab Anim 36: 20–42

    Article  PubMed  Google Scholar 

  • Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, et al. (1996) The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 59: 1134–1148

    PubMed  Google Scholar 

  • Pabst O, Forster R, Lipp M, Engel H, Arnold HH (2000) NKX2.3 is required for MAdCAM-1 expression and homing of lymphocytes in spleen and mucosa-associated lymphoid tissue. EMBO 19: 2015–2023

    Article  Google Scholar 

  • Perez De Nanclares G, Bilbao JR, Calvo B, Castano L (2000) Analysis of chromosome 6q in Basque families with type 1 diabetes. GEPV-N. Basque-Navarre Endocrinology and Paediatric Group. Autoimmunity 33: 33–36

    PubMed  Google Scholar 

  • Pociot F, McDermott MF (2002) Genetics of type I diabetes mellitus. Genes Immun 3: 235–249

    Article  PubMed  Google Scholar 

  • Pocioy F, Lorenzen T, Nerup J (1993) A manganese superoxide dismutase (SOD2) gene polymorphism in insulin-dependent diabetes mellitus. Dis Markers 11: 267–274

    PubMed  Google Scholar 

  • Ramanathan S, Poussier P (2001) BB rat lyp mutation and Type 1 diabetes. Immunol Rev 184: 161–171

    Article  PubMed  Google Scholar 

  • Riedl SJ, Fuentes–Prior P, Renatus M, Kairies N, Krapp S, et al. (2001) Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci USA 98: 14790–14795

    Article  PubMed  Google Scholar 

  • Sander M, German MS (1997) The beta cell transcription factors and development of the pancreas. J Mol Med 75: 327–340

    Article  PubMed  Google Scholar 

  • Serreze DV, Leiter EH (1994) Genetic and pathogenic basis of autoimmune diabetes in NOD mice. Curr Opin Immunol 6: 900–906

    Article  PubMed  Google Scholar 

  • Serreze DV, Gaskins HR, Leiter EH (1993) Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice. J Immunol 150: 2534–2543

    PubMed  Google Scholar 

  • She JX, Marron MP (1998) Genetic susceptibility factors in type 1 diabetes: linkage, disequilibrium and functional analyses. Curr Opin Immunol 10: 682–689

    Article  PubMed  Google Scholar 

  • Shi JD, Wang CY, Marron MP, Ruan QG, Huang YQ, et al. (1999) Chromosomal localization and complete genomic sequence of the murine autoimmune regulator gene (Aire). Autoimmunity 31: 47–53

    PubMed  Google Scholar 

  • Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubenstein JL (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121: 3923–3933

    PubMed  Google Scholar 

  • Tarlinton D, Light A, Metcalf D, Harvey RP, Robb L (2003) Architectural defects in the spleens of Nkx2-3-deficient mice are intrinsic and associated with defects in both B cell maturation and T cell-dependent immune responses. J Immunol 170: 4002–4010

    PubMed  Google Scholar 

  • Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46: 1733–1742

    PubMed  Google Scholar 

  • Tiedge M, Lortz S, Munday R, Lenzen S (1998) Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes 47: 1578–1585

    PubMed  Google Scholar 

  • Tisch R, McDevitt H (1996) Insulin-dependent diabetes mellitus. Cell 85: 291–297

    Article  PubMed  Google Scholar 

  • Todd JA, Acha–Orbea H, Bell JI, Chao N, Fronek Z, et al. (1988) A molecular basis for MHC class II–associated autoimmunity. Science 240: 1003–1009

    PubMed  Google Scholar 

  • Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JR, et al. (1991) Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351: 542–547

    Article  PubMed  Google Scholar 

  • Todd JA, Bell JI, McDevitt HO (1987) HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329: 599–604

    Article  PubMed  Google Scholar 

  • Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, et al. (1997) Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 15: 289–292

    Article  PubMed  Google Scholar 

  • Verge CF, Vardi P, Babu S, Bao F, Erlich HA, et al. (1998) Evidence for oligogenic inheritance of type 1 diabetes in a large Bedouin Arab family. J Clin Invest 102: 1569–1575

    PubMed  Google Scholar 

  • Wang CC, Biben C, Robb L, Nassir F, Barnett L, et al. (2000) Homeodomain factor Nkx2-3 controls regional expression of leukocyte homing coreceptor MAdCAM-1 in specialized endothelial cells of the viscera. Dev Biol 224: 152–167

    Article  PubMed  Google Scholar 

  • Wicker LS, Todd JA, Peterson LB (1995) Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol 13: 179–200

    Article  PubMed  Google Scholar 

  • Wong FS, Janeway CA Jr (1999) Insulin-dependent diabetes mellitus and its animal models. Curr Opin Immunol 11: 643–647

    Article  PubMed  Google Scholar 

  • Xu S, Atchley WR (1996) Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics 143: 1417–1424

    PubMed  Google Scholar 

  • Yokoi N, Kanazawa M, Kitada K, Tanaka A, Kanazawa Y, et al. (1997) A non-MHC locus essential for autoimmune type I diabetes in the Komeda diabetes-prone rat. J Clin Invest 100: 2015–2021

    PubMed  Google Scholar 

  • Yokoi N, Komeda K, Wang HY, Yano H, Kitada K, et al. (2002) Cblb is a major susceptibility gene for rat type 1 diabetes mellitus. Nat Genet 31: 391–394

    PubMed  Google Scholar 

Download references

Acknowledgments

H.W. is a graduate student in the Graduate Research Training Programme No. 705 funded by the Deutsche Forschungsgemeinschaft. This work was supported by a grant from the Deutsche Forschungsgemeinschaft to A.J. and by an NIH grant 1R21AI55464-01 to S.L. and H.J.H. The author thank S.L. Guenet, X. Montagutelli, and K.W. Broman for excellent statistical advice. The technical assistance of M. Meyer, S. Eghtessadi, I. Trotz, and S. Przyklenk is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Wedekind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, H., Bleich, A., Hedrich, HJ. et al. Genetic analysis of the LEW.1AR1-iddm rat: an animal model for spontaneous diabetes mellitus. Mamm Genome 16, 432–441 (2005). https://doi.org/10.1007/s00335-004-3022-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-004-3022-8

Keywords

Navigation