Skip to main content

Advertisement

Log in

Late glacial and Holocene environmental changes inferred from sediments in Lake Myklevatnet, Nordfjord, western Norway

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Late Glacial and Holocene environmental changes were reconstructed using physical, chemical and biological proxies in Lake Myklevatnet, Allmenningen, (5º13′17″E, 61º55′13″N) located at the northern side of Nordfjorden at the coast of western Norway. Myklevatnet (123 m a.s.l.) lies above the Late Glacial marine limit and contains sediments back to approximately 14,300 years before a.d. 2000 (b2k). Because the lake is located ~48 km beyond the margin of the Younger Dryas (YD) fjord and valley glaciers further inland, and did not receive glacier meltwater from local glaciers during the YD, the lake record provides supplementary information to Lake Kråkenes that received glacial meltwater from a local YD glacier. Lake Myklevatnet has a small catchment and is sensitive to Late Glacial and Holocene climate and environmental changes in the coastal region of western Norway. The age-depth relationship was inferred from a radiocarbon- and tephra-based smoothing-spline model with correlated ages from oxygen isotope maxima and minima in the Late Glacial sequence of the NGRIP ice core (in years b2k) to refine the basal chronology in the Myklevatnet record. The results indicate a two-step YD warming, colder early YD temperatures than in the later part of the YD, and considerably more climate and environmental variability during the late Holocene in western Norway than recorded previously in the oxygen isotopes from Greenland ice cores. The Myklevatnet record is also compared with other Late Glacial and Holocene terrestrial and marine proxy reconstructions in the North Atlantic realm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alley RB, Ágústsdóttir AM (2005) The 8k event: cause and consequences of a major Holocene abrupt climate change. Quat Sci Rev 24:1,123–1,149

    Google Scholar 

  • Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8,200 year ago. Geology 6:483–486

    Google Scholar 

  • Andersen BG, Mangerud J, Sørensen R, Reite A, Sveian H, Thoresen M, Bergstrøm B (1995) Younger Dryas ice marginal deposits in Norway. Quat Int 28:147–169

    Google Scholar 

  • Andersen C, Koç N, Jennings A, Andrews T (2004) Nonuniform response of the major surface currents of the Nordic Seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography 19: PA2003, doi: 10.1029/2002PA000873

  • Andersson C, Pausata FSR, Jansen E, Risebrobakken B, Telford R (2010) Holocene trends in the foraminiferal record from the Norwegian Sea and the North Atlantic. Clim Past 6:179–193

    Google Scholar 

  • Andrews JT, Giraudeau J (2003) Multi-proxy records showing significant Holocene environmental variability: the inner N. Iceland shelf (Hunafloi). Quat Sci Rev 22:175–193

    Google Scholar 

  • Andrews JT, Darby D, Eberle D, Jennings AE, Moros M, Ogilvie A (2009) A robust, multisite Holocene history of drift ice off northern Iceland: implications for North Atlantic climate. Holocene 19:71–77

    Google Scholar 

  • Bakke J, Lie Ø, Heegaard E, Dokken T, Haug G, Birks HH, Dulski P, Nilsen T (2009) Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geosci 2:202–205

    Google Scholar 

  • Bakke J, Dahl SO, Paasche Ø, Riis Simonsen J, Kvisvik B, Bakke K, Nesje A (2010) A complete record of Holocene glacier variability at Austre Okstindbreen, northern Norway: an integrated approach. Quat Sci Rev 29:1,246–1,262

    Google Scholar 

  • Barnekow L, Sandgren P (2001) Palaeoclimate and tree-line changes during the Holocene based on pollen and plant macrofossil records from six lakes at different altitudes in northern Sweden. Rev Palaeobot Palynol 117:109–118

    Google Scholar 

  • Barnett C, Dumayne-Peaty L, Matthews JA (2001) Holocene climatic change and tree-line response in Leirdalen, central Jotunheimen, south central Norway. Rev Palaeobot Palynol 117:119–137

    Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Google Scholar 

  • Berger WH, Labeyrie LD (1987) Abrupt climatic change, evidence and implications. NATO ASI Series C, Mathematical and Physical Sciences 216. Reidel, Dordrecht

  • Berner KS, Koc N, Godtliebsen F (2010) High frequency climate variability of the Norwegian Atlantic current during the early Holocene period and a possible connection to the Gleissberg cycle. Holocene 20:245–255

    Google Scholar 

  • Birks HJB (1995) Quantitative palaeoenvironmental reconstructions. In: Maddy D, Brew JS (eds) Statistical modelling of Quaternary science data. Technical guide 5. Quaternary Research Association, Cambridge, pp 161–254

    Google Scholar 

  • Birks HJB (1998) Numerical tools in palaeolimnology- progress, potentialities, and problems. J Paleolimnol 20:307–332

    Google Scholar 

  • Birks HJB, Birks HH (2008) Biological responses to rapid climate change at the Younger Dryas–Holocene transition at Kråkenes, western Norway. Holocene 18:19–30

    Google Scholar 

  • Birks CJA, Koc N (2002) A high-resolution diatom record of Late-Quaternary sea-surface temperatures and oceanographic conditions from the eastern Norwegian Sea. Boreas 31:323–344

    Google Scholar 

  • Birks HJB, Juggins S, Line JM (1990) Lake Water Chemistry Reconstruction. In: Mason BJ (ed) The surface waters acidification programme. Cambridge University Press, Cambridge, pp 301–313

    Google Scholar 

  • Birks HH, Paus A, Svendsen J-I, Alm T, Mangerud J, Landvik JY (1994) Late Weichselian environmental changes in Norway, including Svalbard. J Quat Sci 9:133–145

    Google Scholar 

  • Birks HH, Battarbee RW, Birks HJB (2000) The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late-glacial and early-Holocene—a synthesis. J Paleolimnol 23:91–114

    Google Scholar 

  • Birks HJB, Heiri O, Seppä H, Bjune AE (2010) Strengths and weaknesses of quantitative climate reconstructions based on late-Quaternary biological proxies. Open Ecol J 3:68–110

    Google Scholar 

  • Björck S, Rundgren M, Ingólfsson Ó, Funder S (1997) The Preboreal oscillation around the Nordic Seas: terrestrial and lacustrine responses. J Quat Sci 12:455–465

    Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochron 5:512–518

    Google Scholar 

  • Blaauw M (2012) Out of tune: the dangers of aligning proxy archives. Quat Sci Rev 36:38–49

    Google Scholar 

  • Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climatic records from North Atlantic sediments and Greenland ice. Nature 365:143–147

    Google Scholar 

  • Boyle EA, Keigwin LD (1987) North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330:35–40

    Google Scholar 

  • Brauer A, Haug GH, Dulski P, Sigman DM, Negendank JFW (2008) An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat Geosci 1:520–523

    Google Scholar 

  • Brooks SJ (2006) Fossil midges as palaeoclimatic indicators of the Eurasian region. Quat Sci Rev 25:1,894–1,910

    Google Scholar 

  • Brooks SJ, Birks HJB (2000) Chironomid-inferred Late-glacial air temperatures at Whitrig Bog, southeast Scotland. J Quat Sci 15:759–764

    Google Scholar 

  • Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from Late Glacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1,723–1,741

    Google Scholar 

  • Brooks SJ, Birks HJB (2004) The dynamics of Chironomidae assemblages in response to environmental change during the past 300 years in Spitsbergen. J Paleolimnol 31:483–498

    Google Scholar 

  • Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Tech Guide 10. Quaternary Research Association, London

    Google Scholar 

  • Dahl SO, Nesje A (1996) A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjøkulen, central southern Norway. Holocene 6:381–398

    Google Scholar 

  • Dahl SO, Nesje A, Lie Ø, Fjordheim K, Matthews JA (2002) Timing, equilibrium-line altitudes and climatic implications of two early Holocene glacier during the Erdalen Event at Jostedalsbreen, western Norway. Holocene 12:17–25

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjørnsdottir AE, Bond G (1993) Evidence for a general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220

    Google Scholar 

  • Davis BAS, Brewer S, Stevenson AC, Guiot J, Contributors (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev 22:1,701–1,716

    Google Scholar 

  • Fareth OW (1987) Glacial geology of Middle and Inner Nordfjord, western Norway. Norges Geol Unders Bull 408:1–55

    Google Scholar 

  • Grimm EC (2004) Tilia and Tilia*Graph software. Illinois State Museum, Springfield

    Google Scholar 

  • Gulliksen S, Birks HH, Possnert G, Mangerud J (1998) A calendar age estimate of the Younger Dryas – Holocene boundary at Kråkenes, western Norway. Holocene 8:249–259

    Google Scholar 

  • Heiri O, Lotter AF (2001) Effects of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J Paleolimnol 26:343–350

    Google Scholar 

  • Hjort C, Mangerud J, Adrielsson L, Bondevik S, Landvik JY, Salvigsen O (1995) Radiocarbon dated common mussels Mytilus edulis from eastern Svalbard and the Holocene marine climatic optimum. Polar Res 14:239–243

    Google Scholar 

  • Hosking JRM (1990) Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. J R Stat Soc 52:105–124

    Google Scholar 

  • Iversen J (1954) The late interglacial flora of Denmark and its relation to climate and soil. Danm Geol Unders II 80:87–119

    Google Scholar 

  • Jansen E, Andersson C, Moros M, Nisancioglu KH, Nyland B, Telford RJ (2008) The early to mid-Holocene thermal optimum in the North Atlantic. In: Battarbee RW, Binney HA (eds) Natural climate variability and global warming: a Holocene perspective. Blackwell, Wiley, pp 123–137

    Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup N, Hammer CU, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–313

    Google Scholar 

  • Johnsen SJ, Dahl-Jensen D, Dansgaard W, Gundestrup N (1995) Greenland paleotemperatures derived from GRIP core hole temperature and ice isotope profiles. Tellus Ser B 47:624–629

    Google Scholar 

  • Jones RT, Marshall JD, Crowley SF, Bedford A, Richardson N, Bloemendal J, Oldfield F (2002) A high resolution, multiproxy Late-glacial record of climate change and intrasystem responses in northwest England. J Quat Sci 17:329–340

    Google Scholar 

  • Juggins S (1991) ZONE software. University of Newcastle upon Tyne

  • Karlén W, Matthews JA (1992) Reconstructing Holocene glacier variations from glacial lake sediments: studies from Nordvestlandet and Jostedalsbreen-Jotunheimen, southern Norway. Geogr Ann 74A:327–348

    Google Scholar 

  • Kaufman DS, Ager TA, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsdóttir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Rühland K, Smol JP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western Arctic (0–180°W). Quat Sci Rev 23:529–560

    Google Scholar 

  • Kihlberg E (2008) Tephra stratigraphy and tephra analysis of a Late Quaternary lake sediment core from western Norway. Stockholms Universitet, Examensarbete i kvartärgeologi

    Google Scholar 

  • Kleiven HF, Kissell C, Laj C, Ninnemann US, Richter TO, Cortijo E (2008) Reduced North Atlantic deep water coeval with the glacial lake Agassiz freshwater outburst. Science 319:60–64

    Google Scholar 

  • Klitgaard-Kristensen D, Sejrup H-P, Haflidason H, Johnsen S, Spurk M (1998) A regional 8200 cal. yr BP cooling event in northwestern Europe, induced by final stages of the Laurentide ice-sheet deglaciation? J Quat Sci 13:165–169

    Google Scholar 

  • Klitgaard-Kristensen D, Sejrup H-P, Haflidason H (2001) The last 18 kyr fluctuations in Norwegian Sea surface conditions and implications for the magnitude of climatic change: evidence from the North Sea. Paleoceanography 16:455–467

    Google Scholar 

  • Koc Karpuz N, Jansen E (1992) A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: documentation of rapid climatic changes. Paleoceanography 7:499–520

    Google Scholar 

  • Kullman L (1995) Holocene tree-limit and climate history from the Scandes Mountains, Sweden. Ecology 768:2,490–2,502

    Google Scholar 

  • Lang B, Brooks SJ, Bedford A, Jones RT, Birks HJB, Marshall J (2010) Regional consistency in Lateglacial chironomid-inferred temperatures from five sites in north-west England. Quat Sci Rev 29:1,528–1,538

    Google Scholar 

  • Larocque I (2001) How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeogr Palaeoclim Palaeoecol 172:133–142

    Google Scholar 

  • Larsen E, Stalsberg MK (2004) Younger Dryas glaciolacustrine rhytmites and cirque glacier variations at Kråkenes, western Norway: depositional processes and climate. J Paleolimnol 31:49–61

    Google Scholar 

  • Larsen E, Eide F, Longva O, Mangerud J (1984) Allerød–Younger Dryas climate inferences from cirque glaciers and vegetational development in the Nordfjord area, western Norway. Arctic Alpine Res 16:16–137

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology. Elsevier, Amsterdam

    Google Scholar 

  • Lehman SJ, Keigwin LD (1992) Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356:757–762

    Google Scholar 

  • Lockwood JG (2001) Abrupt and sudden climatic transitions and fluctuations: a review. Int J Climatol 21:1,153–1,179

    Google Scholar 

  • Lohne ØS, Mangerud J, Birks H (2013) Precise 14C ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Greenland Ice Core (GICC05) chronology. J Quat Sci 28:490–500

    Google Scholar 

  • Mangerud J, Andersen ST, Berglund BE, Donner JJ (1974) Quaternary stratigraphy of Norden: a proposal for terminology and classification. Boreas 3:109–127

    Google Scholar 

  • Mangerud J, Larsen E, Longva O, Sønstegaard E (1979) Glacial history of western Norway 15,000–10,000 bp. Boreas 8:179–187

    Google Scholar 

  • Mangerud J, Lie SE, Furnes H, Kristiansen IL, Lømo L (1984) A Younger Dryas ash bed in Western Norway, and its possible correlations with tephra in cores from the Norwegian Sea and the North Atlantic. Quat Res 21:85–104

    Google Scholar 

  • Matthews JA, Karlén W (1992) Asynchronous neoglaciation and Holocene climatic change reconstructed from Norwegian glacio-lacustrine sedimentary sequences. Geology 20:991–994

    Google Scholar 

  • Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, Van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62:243–255

    Google Scholar 

  • Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res 36:1,415–1,426

    Google Scholar 

  • Nesje A (1992) A piston corer for lacustrine and marine sediments. Arctic Alpine Res 24:257–259

    Google Scholar 

  • Nesje A (2009) Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quat Sci Rev 28:2,119–2,136

    Google Scholar 

  • Nesje A, Dahl SO (1991) Holocene glacier variations of Blåisen, Hardangerjøkulen, central southern Norway. Quat Res 54:25–40

    Google Scholar 

  • Nesje A, Dahl SO (2001) The Greenland 8200 cal. year BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences. J Quat Sci 16:155–166

    Google Scholar 

  • Nesje A, Matthews JA, Dahl SO, Berrisford MS, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine records. Holocene 11:267–280

    Google Scholar 

  • Nesje A, Dahl SO, Bakke J (2004a) Were abrupt Late Glacial and early-Holocene climatic changes in northwest Europe linked to freshwater outbursts to the North Atlantic and Arctic Oceans? Holocene 14:299–310

    Google Scholar 

  • Nesje A, Dahl SO, Lie Ø (2004b) Holocene millennial-scale summer temperature variability inferred from sediment parameters in a non-glacial mountain lake: Danntjørn, Jotunheimen, central southern Norway. Quat Sci Rev 23:2,183–2,205

    Google Scholar 

  • Newton A, McColloch B, Dugmore A (2005) Acid digestion of organic samples for the extraction of tephra. Tephrabase

  • Nussbaumer SU, Nesje A, Zumbühl HJ (2011) Historical glacier fluctuations of Jostedalsbreen and Folgefonna (southern Norway) reassessed by new pictorial and written evidence. Holocene 21:455–471

    Google Scholar 

  • Nygård A, Sejrup HP, Haflidason H, Cecchi M, Ottesen D (2008) Deglaciation history of the southwestern Fennoscandian Ice Sheet between 15 and 13 14C ka BP. Boreas 33:1–17

    Google Scholar 

  • Paus A (2013) Human impact, soil erosion, and vegetation response lags to climate change: challenges for the mid-Scandinavian pollen-based transfer-function temperature reconstructions. Veget Hist Archaeobot 22:269–284

    Google Scholar 

  • Persson C (1966) Försök til tefrokronologisk datering it re norska myrar. Geologiska Föreningen i Stockholms Förhandlingar 89:181–197

    Google Scholar 

  • Quinlan R, Smol JP (2001) Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J Paleolimnol 26:327–342

    Google Scholar 

  • Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214

    Google Scholar 

  • Rasmussen TL, Thomsen E (2010) Holocene temperature and salinity variability of the Atlantic water inflow to the Nordic seas. Holocene 20:1,223–1,234

    Google Scholar 

  • Rasmussen SO et al (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111:D06102. doi:10.1029/2005JD006079

    Google Scholar 

  • Rein B, Sirocko F (2002) In-situ reflectance spectroscopy-analysing techniques for high-resolution pigment logging in sediment cores. Int J Earth Sci 91:950–954

    Google Scholar 

  • Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414

    Google Scholar 

  • Richter TO, van der Gaast S, Koster B, Vaars A, Gieles R, De Stigter HC, De Haas H, van Weering TCE (2006) The AVATECH XRF core scanner: technical description and applications to NE Atlantic sediments. In: Rothwell RG (ed) New Techniques in Sediment Core Analysis. Geological Society, London, pp 39–50

    Google Scholar 

  • Risebrobakken B, Jansen E, Andersson C, Mjelde E, Hevrøy K (2003) A high-resolution study of Holocene paleoclimatic and paleocenographic changes in the Nordic Seas. Paleoceanography 18(1):017. doi:10.1029/2002PA000764

    Google Scholar 

  • Risebrobakken B, Moros M, Ivanova EV, Chistyakova N, Rosenberg R (2010) Climate and oceanographic variability in the SW Barents Sea during the Holocene. Holocene 20:609–621

    Google Scholar 

  • Rohling EJ, Pälike H (2005) Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434:975–979

    Google Scholar 

  • Rye N, Nesje A, Lien R, Anda E (1987) The Late Weichselian ice sheet in the Nordfjord-Sunnmøre area and deglaciation chronology for Nordfjord, western Norway. Nor Geogr Tidsskr 41:23–43

    Google Scholar 

  • Rye N, Nesje A, Lien R, Blikra LH, Eikenæs O, Hole PA, Torsnes I (1997) Glacial geology and deglaciation chronology of the area between inner Nordfjord and Jostedalsbreen–Strynefjellet, western Norway. Norsk Geol Tidsskr 77:51–63

    Google Scholar 

  • R Development core team (2011) R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria. www.R-project.org

  • Salvigsen O (2002) Radiocarbon-dated Mytilus edulis and Modiolus modiolus from northern Svalbard: climatic implications. Norsk Geogr Tidsskr 56:56–61

    Google Scholar 

  • Salvigsen O, Forman SL, Miller GH (1992) Thermophilous molluscs on Svalbard during the Holocene and their paleoclimatic implications. Polar Res 11:1–10

    Google Scholar 

  • Sejrup HP, Haflidason H, Andrews JT (2011) A Holocene North Atlantic SST record and regional climate variability. Quat Sci Rev 30:3,181–3,195

    Google Scholar 

  • Self AE, Brooks SJ, Birks HJB, Nazarova LB, Porinchu D, Odland A, Yang H, Jones VJ (2011) The influence of temperature and continentality on modern chironomid assemblages in high-latitude Eurasian lakes: development and application of new chironomid-based climate-inference models in northern Russia. Quat Sci Rev 30:1,122–1,141

    Google Scholar 

  • Seppä H, Bjune AE, Telford RJ, Birks HJB, Veski S (2009) Last nine-thousand years of temperature variability in northern Europe. Clim of the Past 5:523–535

    Google Scholar 

  • Seppä H, Birks HJB, Bjune AE, Nesje A (2010) Centenary of modern palaeoclimate research in the Nordic region (100 years since Gunnar Andersson 1909) – Introduction. Boreas 39:649–654

    Google Scholar 

  • Sigmond EMO, Gustavson M, Roberts D (1984) Berggrunnskart over Norge. M 1:1 million. Norges Geol Unders

  • Sønstegaard E, Aa AR, Klakegg O (1999) Younger Dryas glaciation in the Ålfoten area, western Norway; evidence from lake sediments and marginal moraines. Norsk Geol Tidsskr 79:33–45

    Google Scholar 

  • Steiner D, Pauling A, Nussbaumer SU, Nesje A, Luterbacher J, Wanner H, Zumbühl HJ (2008) Sensitivity of European glaciers to precipitation and temperature – two case studies. Clim Chang 90:413–441

    Google Scholar 

  • Stuiver M, Grootes PM, Braziunas TF (1995) The GISP2 ∂18O climate record of the past 16,500 years and the role of sun, ocean, and volcanoes. Quat Res 44:341–354

    Google Scholar 

  • Turney CSM (1998) Extraction of rhyoloitic component of Vedde microtephra from minerogenic lake sediments. J Paleolimnol 19:199–206

    Google Scholar 

  • Vasskog K, Paasche Ø, Nesje A, Boyle JF, Birks HJB (2012) A new approach for reconstructing glacier variability based on lake sediments recording input from more than one glacier. Quat Res 77:192–204

    Google Scholar 

  • Velle G, Brooks SJ, Birks HJB, Willassen E (2005) Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quat Sci Rev 24:1,429–1,462

    Google Scholar 

  • Vinther BM, Clausen HB, Fisher DA, Koerner RM, Johnsen SJ, Andersen KK, Dahl-Jensen D, Rasmussen SO, Steffensen JP, Svensson AM (2008) Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology. J Geophys Res 113:D08115. doi:10.1029/2007JD009143

    Google Scholar 

  • Von Grafenstein U, Erlenkeuser H, Müller J, Jouzel J, Johnsen S (1998) The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim Dyn 14:73–81

    Google Scholar 

  • Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1,791–1,828

    Google Scholar 

  • Webb PW, Orr C (1997) Analytical Methods in Fine Particle Technology. Micromeretics Instrument Corporation, Norcross

    Google Scholar 

  • Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1,791–1,828

    Google Scholar 

  • Wiederholm T (ed) (1983) Chironomidae of the Holarctic region, Keys and diagnoses, Part 1, Larvae. Entomologica Scandinavica Suppl 19:1–457

  • Wolfe AP, Vinebrooke R, Michelutti N, Rivard B, Das B (2006) Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: methodology and paleolimnological validation. J Paleolimnol 36:91–100

    Google Scholar 

Download references

Acknowledgments

Åsmund Bakke, Herbjørn Heggen and Joachim Riis Simonsen participated in the lake coring and Bjørn Kvisvik and Jørund Strømsøe carried out some of the laboratory analyses. The radiocarbon dating was carried out at the Poznan Radiocarbon Laboratory under the leadership of Tomasz Goslar. Financial support was received from the Norwegian Research Council to the NORPAST-II, SEDITRANS and ARCTREC projects. Mathias Trachsel acknowledges financial support from the Swiss Science Foundation. Eva Bjørseth and Jane Ellingsen prepared some of the figures. To all these persons and institutions we offer our sincere thanks. We also thank two anonymous reviewers, whose comments and suggestions improved the paper. This is publication no. A437 from the Bjerknes Centre for Climate Research. The pioneering work of Hilary Birks and her collaborators at the Kråkenes site helped to shape the research presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atle Nesje.

Additional information

Communicated by K.J. Willis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesje, A., Bakke, J., Brooks, S.J. et al. Late glacial and Holocene environmental changes inferred from sediments in Lake Myklevatnet, Nordfjord, western Norway. Veget Hist Archaeobot 23, 229–248 (2014). https://doi.org/10.1007/s00334-013-0426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-013-0426-y

Keywords

Navigation