Skip to main content
Log in

Motility Switching and Front–Back Synchronisation in Polarised Cells

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The combination of protrusions and retractions in the movement of polarised cells leads to understand the effect of possible synchronisation between the two ends of the cells. This synchronisation, in turn, could lead to different dynamics such as normal and fractional diffusion. Departing from a stochastic single cell trajectory, where a “memory effect” induces persistent movement, we derive a kinetic-renewal system at the mesoscopic scale. We investigate various scenarios with different levels of complexity, where the two ends of the cell move either independently or with partial or full synchronisation. We study the relevant macroscopic limits where we obtain diffusion, drift-diffusion or fractional diffusion, depending on the initial system. This article clarifies the form of relevant macroscopic equations that describe the possible effects of synchronised movement in cells, and sheds light on the switching between normal and fractional diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. \(\psi (k)\) is the probability of a run of length at least k. I would like to achieve this distribution by independent decisions whether to turn or not (based on \(\text {rand}(1)\)). The probability to continue the run after the first time step is P(1), the probability to continue after the second time step is P(2), etc. The probability that the cell has not turned within the first k time steps is P(1)P(2)...P(k). This is in fact equal to \(\psi (k)\). The formula \(\psi (k) = P(1)P(2)...P(k)\) \(\forall k\) has a unique solution for the probabilities P: \(P(j) = \psi (j)/\psi (j-1)\).

References

  • Ariel, G., Rabani, A., Benisty, S., Partridge, J.D., Harshey, R.M., Be’Er, A.: Swarming bacteria migrate by Lévy walk. Nat. Commun. 6(1), 1–6 (2015)

    Article  Google Scholar 

  • Estrada-Rodriguez, G., Gimperlein, H., Painter, K.J.: Fractional Patlak–Keller–Segel equations for chemotactic superdiffusion. SIAM J. Appl. Math. 78(2), 1155–1173 (2018)

    Article  MathSciNet  Google Scholar 

  • Fedotov, S., Korabel, N.: Emergence of lévy walks in systems of interacting individuals. Phys. Rev. E 95(3), 030107 (2017)

    Article  Google Scholar 

  • Fedotov, S., Tan, A., Zubarev, A.: Persistent random walk of cells involving anomalous effects and random death. Phys. Rev. E 91(4), 042124 (2015)

    Article  MathSciNet  Google Scholar 

  • Ferrari, F.: Some nonlocal operators in the first Heisenberg group. Fractal Fract. 1(1), 15 (2017)

    Article  Google Scholar 

  • Ferrari, F.: Weyl and Marchaud derivatives: a forgotten history. Mathematics 6(1), 6 (2018)

    Article  Google Scholar 

  • Focardi, S., Montanaro, P., Pecchioli, E.: Adaptive Lévy walks in foraging fallow deer. PLoS ONE 4(8), e6587 (2009)

    Article  Google Scholar 

  • Frank, M., Goudon, T.: On a generalized Boltzmann equation for non-classical particle transport. Kinetic Relat. Models 3(3), 395–407 (2010)

    Article  MathSciNet  Google Scholar 

  • Frank, M., Sun, W.: Fractional diffusion limits of non-classical transport equations. Kinetic Relat. Models 11(6), 1503–1526 (2018)

    Article  MathSciNet  Google Scholar 

  • Fricke, G.M., Letendre, K.A., Moses, M.E., Cannon, J.L.: Persistence and adaptation in immunity: T cells balance the extent and thoroughness of search. PLoS Comput. Biol. 12(3), e1004818 (2016)

    Article  Google Scholar 

  • Harris, T.H., Banigan, E.J., Christian, D.A., Konradt, C., Wojno, E.D.T., Norose, K., Wilson, E.H., John, B., Weninger, W., Luster, A.D., et al.: Generalized lévy walks and the role of chemokines in migration of effector cd8+ t cells. Nature 486(7404), 545–548 (2012)

    Article  Google Scholar 

  • Huda, S., Weigelin, B., Wolf, K., Tretiakov, K.V., Polev, K., Wilk, G., Iwasa, M., Emami, F.S., Narojczyk, J.W., Banaszak, M., et al.: Lévy-like movement patterns of metastatic cancer cells revealed in microfabricated systems and implicated in vivo. Nat. Commun. 9(1), 1–11 (2018)

    Article  Google Scholar 

  • Jara, M., Komorowski, T., Olla, S.: Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19(6), 2270–2300 (2009)

    Article  MathSciNet  Google Scholar 

  • Klafter, J., Sokolov, I.M.: First Steps in Random Walks: From Tools to Applications. Oxford University Press, Oxford (2011)

    Book  Google Scholar 

  • Korobkova, E., Emonet, T., Vilar, J.M., Shimizu, T.S., Cluzel, P.: From molecular noise to behavioural variability in a single bacterium. Nature 428(6982), 574–578 (2004)

    Article  Google Scholar 

  • Li, L., Nørrelykke, S.F., Cox, E.C.: Persistent cell motion in the absence of external signals: a search strategy for eukaryotic cells. PLoS ONE 3(5), e2093 (2008)

    Article  Google Scholar 

  • Loy, N., Preziosi, L.: Kinetic models with non-local sensing determining cell polarization and speed according to independent cues. J. Math. Biol. 80(1), 373–421 (2020)

    Article  MathSciNet  Google Scholar 

  • Loy, N., Preziosi, L.: Modelling physical limits of migration by a kinetic model with non-local sensing. J. Math. Biol. 80(6), 1759–1801 (2020)

    Article  MathSciNet  Google Scholar 

  • Mellet, A., Mischler, S., Mouhot, C.: Fractional diffusion limit for collisional kinetic equations. Arch. Ration. Mech. Anal. 199(2), 493–525 (2011)

    Article  MathSciNet  Google Scholar 

  • Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  • Moussa, A., Perthame, B., Salort, D.: Backward parabolicity, cross-diffusion and Turing instability. J. Nonlinear Sci. 29(1), 139–162 (2019)

    Article  MathSciNet  Google Scholar 

  • NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.14 of 2016-12-21. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., (eds.)

  • Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26(3), 263–298 (1988)

    Article  MathSciNet  Google Scholar 

  • Perthame, B., Yasuda, S.: Stiff-response-induced instability for chemotactic bacteria and flux-limited Keller–Segel equation. Nonlinearity 31(9), 4065–4089 (2018)

    Article  MathSciNet  Google Scholar 

  • Raichlen, D.A., Wood, B.M., Gordon, A.D., Mabulla, A.Z., Marlowe, F.W., Pontzer, H.: Evidence of Lévy walk foraging patterns in human hunter-gatherers. Proc. Natl. Acad. Sci. 111(2), 728–733 (2014)

    Article  Google Scholar 

  • Reynolds, A., Ceccon, E., Baldauf, C., Karina Medeiros, T., Miramontes, O.: Lévy foraging patterns of rural humans. PLoS ONE 13(6), e0199099 (2018)

    Article  Google Scholar 

  • Reynolds, A., Santini, G., Chelazzi, G., Focardi, S.: The Weierstrassian movement patterns of snails. R. Soc. Open Sci. 4(6), 160941 (2017)

    Article  MathSciNet  Google Scholar 

  • Reynolds, A.M., Smith, A.D., Menzel, R., Greggers, U., Reynolds, D.R., Riley, J.R.: Displaced honey bees perform optimal scale-free search flights. Ecology 88(8), 1955–1961 (2007)

    Article  Google Scholar 

  • Sims, D.W., Southall, E.J., Humphries, N.E., Hays, G.C., Bradshaw, C.J., Pitchford, J.W., James, A., Ahmed, M.Z., Brierley, A.S., Hindell, M.A., et al.: Scaling laws of marine predator search behaviour. Nature 451(7182), 1098–1102 (2008)

    Article  Google Scholar 

  • Sokolov, I.M., Metzler, R.: Towards deterministic equations for Lévy walks: the fractional material derivative. Phys. Rev. E 67(1), 010101 (2003)

    Article  Google Scholar 

  • Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E., Prince, P., Stanley, H.E.: Lévy flight search patterns of wandering albatrosses. Nature 381(6581), 413–415 (1996)

    Article  Google Scholar 

  • Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87(2), 483 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gissell Estrada-Rodriguez.

Additional information

Communicated by Alain Goriely.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

B.P. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 740623). G.E.R. acknowledges the support of the Fondation Sciences Mathématiques de Paris (FSMP) for the postdoctoral fellowship.

Appendix

Appendix

1.1 A Miscellaneous

(I) We compute the escape and arrival rates introduced in (63) by using the characteristic solutions (61) and (62). We start from

$$\begin{aligned} j_{\alpha ^-}(t,x)=\int _0^{t}p(k){\alpha ^-}(t,x,k)\mathrm{d}x \end{aligned}$$

which, by using (3) and (62), can be rewritten as:

$$\begin{aligned} j_{\alpha ^-}(t,x)&=\int _0^{t}\phi (k){\alpha ^-}(t-k,x+vk,0)\mathrm{d}k+{\tilde{\alpha }^-_0(x+vk)\phi (k)}\nonumber \\&= \int _0^{t} \phi (t-s)e^{v(t-s)\partial _x}{\alpha ^-}(s,x,0)\mathrm{d}s \, +{\tilde{\alpha }^-_0(x+vk)\phi (k)}. \end{aligned}$$
(101)

The last equality is obtained using the change of variables \(k=t-s\) along with the following Taylor expansion:

$$\begin{aligned} e^{v(t-s)\partial _x}f(x)&=\sum _{m=0}^\infty \frac{(v(t-s) \partial _x)^m}{m!}f(x)\\&=\sum _{m=0}^\infty \frac{1}{m!}(v(t-s))^m\partial _x^mf(x)=f(x+v(t-s)). \end{aligned}$$

Analogously we can obtain (64) for \(j_{\alpha ^+}(t,x)\).

(II) Now we aim to derive the expression (88). From (84) we write, after multiplying both sides by \(\bar{\psi }^+\bar{\psi }^-\)

$$\begin{aligned} \bar{\psi }^+\,\bar{\psi }^-\,\bar{\rho }\,=\,\bar{\psi }^+\,\bar{\phi }^- \,\bar{\tilde{\alpha }}^-\,+\,\bar{{\alpha }}^+_0\,\bar{\psi }^+ \,\bar{\psi }^-\,+\,\bar{\psi }^-\,\bar{\phi }^+\,\bar{\tilde{\alpha }}^+ \,\bar{\psi }^-\,+\,\bar{{\alpha }}^-_0\,\bar{\psi }^-\,\bar{\psi }^+. \end{aligned}$$
(102)

Using the initial conditions \(\alpha ^+_{0_\varepsilon }=\varepsilon ^z\delta (x)\) and \({{\alpha }}^-_0(x)=0\), we obtain (88). Now, we introduce the scaling to (74) and we write

$$\begin{aligned} \bar{\psi }^\pm&=-\frac{a}{1-\mu }-\frac{a^2\lambda _\pm }{(1-\mu )(2-\mu )}+a^{\alpha ^+}\lambda _\pm ^{\mu -1}\Gamma (-\mu +1)+{\mathcal {O}}(a^3\lambda _\pm ^2)\ ,\\ \bar{\phi }^\pm&=1+\frac{a\lambda _\pm }{1-\mu }+a^\mu \lambda _\pm ^\mu +O(\lambda ^{\mu +1}). \end{aligned}$$

Hence from here we compute

$$\begin{aligned} \bar{\psi }^+\bar{\phi }^-&=-\frac{a}{1-\mu }-\frac{a^2\lambda _+}{(1-\mu )(2-\mu )}+a^\mu \lambda _+^{\mu -1}\Gamma (-\mu +1)-\frac{a^2\lambda _-}{(1-\mu )^2}+{\mathcal {O}}(a^{\mu +1})\ ,\\ \bar{\psi }^-\bar{\phi }^+&=-\frac{a}{1-\mu }-\frac{a^2\lambda _-}{(1-\mu )(2-\mu )}+a^\mu \lambda _-^{\mu -1}\Gamma (-\mu +1)-\frac{a^2\lambda _+}{(1-\mu )^2}+{\mathcal {O}}(a^{\mu +1})\ ,\\ \bar{\psi }^+\bar{\psi }^-&=\frac{a^2}{(1-\mu )^2}-a^{\mu +1}\frac{\Gamma (\mu +1)}{1-\mu }(\lambda _-^{\mu -1}+\lambda ^{\mu -1}_+)+{\mathcal {O}}(a^3). \end{aligned}$$

Substituting these three quantities in (102), we arrive at (89).

(III) Finally, we are going to work only with the fractional operators. Following (Ferrari 2017, 2018) we have

$$\begin{aligned} \mathbb {D}_-^{\mu -1}\tilde{\alpha }^-&=\frac{-1}{\Gamma (2-\mu )}\frac{\partial }{\partial x}\int _x^\infty \frac{\tilde{\alpha }^-(s)}{(s-x)^{\mu -1}}\mathrm{d}s\\&=\frac{\mu -1}{\Gamma (2-\mu )}\int _0^\infty \frac{\tilde{\alpha }^-(x)-\tilde{\alpha }^-(x+s)}{s^{\mu }}\mathrm{d}s\\ \mathbb {D}_+^{\mu -1}\tilde{\alpha }^+&=\frac{1}{\Gamma (2-\mu )}\frac{\partial }{\partial x}\int ^x_{-\infty }\frac{\tilde{\alpha }^+(s)}{(s-x)^{\mu -1}}\mathrm{d}s\\&=\frac{\mu -1}{\Gamma (2-\mu )}\int _0^\infty \frac{\tilde{\alpha }^+(x)-\tilde{\alpha }^+(x-s)}{s^{\mu }}\mathrm{d}s. \end{aligned}$$

The above relation is true if \(\tilde{\alpha }^+,\tilde{\alpha }^-\in C^1(\mathbb {R})\) and \(\tilde{\alpha }^+,\tilde{\alpha }^- =o(|x|^{\mu -2-\epsilon })\), \(x\rightarrow +\infty \) for \(\epsilon >0\) (equivalence between Marchaud derivative and Riemann–Liouville derivative).

Now we are going to use the fact that the sum \(\mathbb {D}_-^{\mu -1}f+\mathbb {D}^{\mu -1}_+f\) gives the fractional Laplace operator in one dimension, also known as the Riesz derivative,

$$\begin{aligned}&\mathbb {D}_-^{\mu -1}\tilde{\alpha }^-+\mathbb {D}_+^{\mu -1}\tilde{\alpha }^+\\&\quad =\frac{\mu -1}{\Gamma (2-\mu )}\Bigl (\int _0^\infty \frac{\tilde{\alpha }^-(x)-\tilde{\alpha }^-(x+s)}{s^\mu }\mathrm{d}s+\int _0^\infty \frac{\tilde{\alpha }^+(x)-\tilde{\alpha }^+(x-s)}{s^\mu }\mathrm{d}s \Bigr )\\&\quad =\frac{\mu -1}{\Gamma (2-\mu )}\Bigl (\int _{-\infty }^0 \frac{\tilde{\alpha }^-(x)-\tilde{\alpha }^-(x-s)}{|s|^\mu }\mathrm{d}s+\int _0^\infty \frac{\tilde{\alpha }^+(x)-\tilde{\alpha }^+(x-s)}{s^\mu }\mathrm{d}s \Bigr )\\&\quad =\frac{\mu -1}{2\Gamma (2-\mu )}\int _{-\infty }^\infty \frac{\tilde{\alpha }^-(x)+\tilde{\alpha }^+(x)-\tilde{\alpha }^-(x-s)-\tilde{\alpha }^+(x-s)}{|s|^\mu }\mathrm{d}s\\&\quad =\frac{\mu -1}{2\Gamma (2-\mu )}\int _{-\infty }^\infty \frac{\rho (x)-\rho (x-s)}{|s|^\mu }\mathrm{d}s\\&\quad =\frac{\mu -1}{2\Gamma (2-\mu )}\frac{1}{c(1,\frac{\mu -1}{2})}\Bigl (-\frac{\mathrm{d}^2}{\mathrm{d}x^2} \Bigr )^{\frac{\mu -1}{2}}\rho (t,x)\ , \end{aligned}$$

where \(c(1,\frac{\mu -1}{2})\) is a normalisation constant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada-Rodriguez, G., Perthame, B. Motility Switching and Front–Back Synchronisation in Polarised Cells. J Nonlinear Sci 32, 40 (2022). https://doi.org/10.1007/s00332-022-09791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09791-z

Navigation