Skip to main content
Log in

The Blow-Up and Global Existence of Solution to Caputo–Hadamard Fractional Partial Differential Equation with Fractional Laplacian

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper is devoted to studying the blow-up and global existence of the solution to a semilinear time-space fractional diffusion equation, where the time derivative is in the Caputo–Hadamard sense and the spatial derivative is the fractional Laplacian. The mild solution of the considered semilinear equation by a convolution form is obtained, where the fundamental solutions are denoted by Fox H-functions. Then, applying contraction mapping principle, the local existence and uniqueness of the mild solution are shown, and the mild solution is proved to be a weak solution. The blow-up in a finite time and global existence of the solution to this semilinear equation are displayed by a fixed point argument. Finally, the blow-up of solution in a finite time is verified by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alsaedi, A., Ahmad, B., Kirane, M., Rebiai, B.: Local and blowing-up solutions for a space-time fractional evolution system with nonlinearities of exponential growth. Math. Methods Appl. Sci. 42, 4378–4393 (2019)

    Article  MathSciNet  Google Scholar 

  • Boulenger, T., Himmelsbach, D., Lenzmann, E.: Blowup for fractional NLS. J. Funct. Anal. 271, 2569–2603 (2016)

    Article  MathSciNet  Google Scholar 

  • Cazenave, T., Dickstein, F., Weissler, F.B.: An equation whose Fujita critical exponent is not given by scaling. Nonlinear Anal. 68(4), 862–874 (2008)

    Article  MathSciNet  Google Scholar 

  • Chan, H., Gómez-Castro, D., Vázquez, J.L.: Blow-up phenomena in nonlocal eigenvalue problems: When theories of \(L^{1}\) and \(L^{2}\) meet. J. Funct. Anal. 280, 108845 (2021)

    Article  Google Scholar 

  • D’Elia, M., Du, Q., Glusa, C., Gunzburger, M., Tian, X.C., Zhou, Z.: Numerical methods for nonlocal and fractional models. Acta Numerica 29, 1–124 (2020)

  • Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2011)

  • De Andrade, B., Cruz, T.S.: Regularity theory for a nonlinear fractional reaction-diffusion equation. Nonlinear Anal. 195, 111705 (2020)

    Article  MathSciNet  Google Scholar 

  • Deng, K., Levine, H.A.: The role of critical exponents in blow-up theorems: the sequel. J. Math. Anal. Appl. 243(1), 85–126 (2000)

    Article  MathSciNet  Google Scholar 

  • Denisov, S.I., Kantz, H.: Continuous-time random walk theory of superslow diffusion. Europhys. Lett. 92, 30001 (2010)

    Article  Google Scholar 

  • Duo, S.W., Wyk, H.W.V., Zhang, Y.Z.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2018)

    Article  MathSciNet  Google Scholar 

  • Eidelman, S.D., Kochubei, A.N.: Cauchy problem for fractional diffusion equations. J. Diff. Equ. 199(2), 221–255 (2004)

    Article  MathSciNet  Google Scholar 

  • Fino, A.Z., Kirane, M.: Qualitative properties of solutions to a time-space fractional evolution equation. Quart. Appl. Math. 70(1), 133–157 (2012)

    Article  MathSciNet  Google Scholar 

  • Fujita, H.: On the blowing up of solutions of the Cauchy problem for \(u_{t}=\Delta u+u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo Sect. I(13), 109–124 (1966)

    Google Scholar 

  • Furati, K.M., Kassim, M.D., Tatar, N.-E.: Non-existence of global solutions for a differential equation involving Hilfer fractional derivative. Electron. J. Differ. Equ. 2013, 235 (2013)

    Article  MathSciNet  Google Scholar 

  • Gohar, M., Li, C.P., Li, Z.Q.: Finite difference methods for Caputo–Hadamard fractional differential equations-. Mediterr. J. Math. 17, 194 (2020)

    Article  MathSciNet  Google Scholar 

  • Hadamard, J.: Essai sur létude des fonctions données par leur développement de Taylor. J. Math. Pures Appl. 8, 101–186 (1892)

    MATH  Google Scholar 

  • Hayakawa, K.: On nonexistence of global solutions of some semilinear parabolic equations. Proc. Jpn. Acad. 49, 503–505 (1973)

    MathSciNet  MATH  Google Scholar 

  • Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasigeostrophic equations. Commun. Pure. Appl. Anal. 255, 161–181 (2005)

    MATH  Google Scholar 

  • Kemppainen, J.: Positivity of the fundamental solution for fractional diffusion and wave equations. Math. Methods Appl. Sci. 44, 2468–2486 (2021)

    Article  MathSciNet  Google Scholar 

  • Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38(6), 1191–1204 (2001)

    MathSciNet  MATH  Google Scholar 

  • Kilbas, A.A., Saigo, M.: \(H\)-Transforms: Theory and Applications. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

  • Kirane, M., Laskri, Y., Tatar, N.E.: Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives. J. Math. Anal. Appl. 312, 488–501 (2005)

    Article  MathSciNet  Google Scholar 

  • Kobayashi, K., Siaro, T., Tanaka, H.: On the growing up problem for semilinear heat equations. J. Math. Soc. Japan 29, 407–424 (1977)

    MathSciNet  Google Scholar 

  • Li, C.P., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives. SIAM, Philadelphia (2019)

    Book  Google Scholar 

  • Li, C.P., Li, Z.Q.: Asymptotic behaviors of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian. Int. J. Comput. Math. 98(2), 305–339 (2021a)

    Article  MathSciNet  Google Scholar 

  • Li, C.P., Li, Z.Q.: Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete Contin. Dyn. Syst. Ser. S. https://doi.org/10.3934/dcdss.2021023 (2021b)

  • Li, L., Liu, J.G., Wang, L.Z.: Cauchy problems for Keller–Segel type time-space fractional diffusion equation. J. Differ. Equ. 265, 1044–1096 (2018)

    Article  MathSciNet  Google Scholar 

  • Lomnitz, C.: Application of the logarithmic creep law to stress wave attenuation in the solid earth. J. Geophys. Res. 67, 365–368 (1962)

    Article  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  • Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  • Souplet, P.: Blow-up in nonlocal reaction-diffusion equations. SIAM J. Math. Anal. 29(6), 1301–1334 (1998)

    Article  MathSciNet  Google Scholar 

  • Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The \(H\)-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi (1982)

    MATH  Google Scholar 

  • Weissler, F.B.: Existence and nonexistence of global solutions for a semilinear heat equation. Israel J. Math. 38, 29–40 (1981)

    Article  MathSciNet  Google Scholar 

  • Vázquez, L.: Singularity analysis of a nonlinear fractional differential equation. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat 99(2), 211–217 (2005)

    MathSciNet  MATH  Google Scholar 

  • Zhang, Q.G., Sun, H.R.: The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation. Topol. Methods Nonlinear Anal. 46(1), 69–92 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changpin Li.

Additional information

Communicated by Eliot Fried.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was partially supported by the National Natural Science Foundation of China under Grant nos. 11872234 and 11926319.

Appendix

Appendix

In the Appendix, we briefly introduce the definition of Fox H-function, see also (Kilbas et al. 2006; Kilbas and Saigo 2004; Srivastava et al. 1982) in detail.

Let \(0\le m \le \nu \) and \(0\le n \le \mu \) with \(m,n,\mu ,\nu \in \mathbb {Z}\). For \(a_{l}, b_{j}\in \mathbb {C}\), and \(\alpha _{l}, \beta _{j}\in \mathbb {R}^{+}\ (l=1,\ldots ,\mu ;\ j=1,\ldots ,\nu )\), the Fox H-function \(H_{\mu \nu }^{mn}(z)\) is defined via a Mellin–Barnes-type integral as

$$\begin{aligned} H_{\mu \nu }^{mn}(z)&\equiv H_{\mu \nu }^{mn}\bigg (z\bigg | \begin{array}{l} (a_{1},\alpha _{1}),\ldots , (a_{n},\alpha _{n});\,\, (a_{n+1},\alpha _{n+1}), \ldots , (a_{\mu },\alpha _{\mu }) \\ (b_{1},\beta _{1}),\,\ldots , (b_{m},\beta _{m});\, (b_{m+1},\beta _{m+1}), \ldots , (b_{\nu },\beta _{\nu }) \end{array} \bigg ) \\&:=\frac{1}{2\pi i}\int _{\mathcal {C}} \mathcal {H}_{\mu \nu }^{mn}(\tau )z^{-\tau }\mathrm{{d}}\tau , \end{aligned}$$

where

$$\begin{aligned} \mathcal {H}_{\mu \nu }^{mn}(\tau ):=\frac{\prod _{j=1}^{m}\Gamma (b_{j} +\beta _{j}\tau )\prod _{l=1}^{n}\Gamma (1-a_{l}-\alpha _{l}\tau )}{\prod _{l=n+1}^{\mu }\Gamma (a_{l}+\alpha _{l}\tau ) \prod _{j=m+1}^{\nu }\Gamma (1-b_{j}-\beta _{j}\tau )}, \end{aligned}$$

and, the poles

$$\begin{aligned} b_{j\sigma }=-\frac{b_{j}+\sigma }{\beta _{j}} \ \ (j=1, \ldots , m;\,\sigma =0,1,2,\ldots ) \end{aligned}$$

and the poles

$$\begin{aligned} a_{lk}=\frac{1-a_{l}+k}{\alpha _{l}} \ \ (l=1, \ldots , n;\ k=0,1,2,\ldots ) \end{aligned}$$

do not coincide, i.e.,

$$\begin{aligned} \alpha _{l}(b_{j}+\sigma )\ne \beta _{j}(a_{l}-k-1) \ \ (j=1, \ldots , m;\ l=1, \ldots , n; \ \sigma , \,k=0,1,2,\ldots ). \end{aligned}$$

The contour \(\mathcal {C}\) is the infinite contour in the complex plane which separates all the poles at \(\tau =b_{j\sigma }\) to the left and all the poles at \(\tau =a_{lk}\) to the right of \(\mathcal {C}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, Z. The Blow-Up and Global Existence of Solution to Caputo–Hadamard Fractional Partial Differential Equation with Fractional Laplacian. J Nonlinear Sci 31, 80 (2021). https://doi.org/10.1007/s00332-021-09736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09736-y

Keywords

Mathematics Subject Classification

Navigation