Skip to main content
Log in

Solving Optimal Control Problems by Exploiting Inherent Dynamical Systems Structures

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Computing globally efficient solutions is a major challenge in optimal control of nonlinear dynamical systems. This work proposes a method combining local optimization and motion planning techniques based on exploiting inherent dynamical systems structures, such as symmetries and invariant manifolds. Prior to the optimal control, the dynamical system is analyzed for structural properties that can be used to compute pieces of trajectories that are stored in a motion planning library. In the context of mechanical systems, these motion planning candidates, termed primitives, are given by relative equilibria induced by symmetries and motions on stable or unstable manifolds of e.g. fixed points in the natural dynamics. The existence of controlled relative equilibria is studied through Lagrangian mechanics and symmetry reduction techniques. The proposed framework can be used to solve boundary value problems by performing a search in the space of sequences of motion primitives connected using optimized maneuvers. The optimal sequence can be used as an admissible initial guess for a post-optimization. The approach is illustrated by two numerical examples, the single and the double spherical pendula, which demonstrates its benefit compared to standard local optimization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. www.nag.co.uk.

  2. https://projects.coin-or.org/ADOL-C.

References

  • Abraham, R., Marsden, J.E.: Foundations of Mechanics. Addison-Wesley, Redwood City (1987)

    Google Scholar 

  • Ames, A.D., Sastry, S.: Hybrid Routhian reduction of Lagrangian hybrid systems. In: American Control Conference, 2006, June 2006. 6 pp.

    Google Scholar 

  • Betts, J.T.: Survey of numerical methods for trajectory optimization. AIAA J. Guid. Control Dyn. 21(2), 193–207 (1998)

    Article  MATH  Google Scholar 

  • Binder, T., Blank, L., Bock, H.G., Bulirsch, R., Dahmen, W., Diehl, M., Kronseder, T., Marquardt, W., Schlöder, J.P., von Stryk, O.: Introduction to model based optimization of chemical processes on moving horizons. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds.) Online Optimization of Large Scale Systems: State of the Art, pp. 295–340. Springer, Berlin (2001)

    Google Scholar 

  • Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  • Bloch, A.M., Leonard, N.E., Marsden, J.E.: Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Trans. Autom. Control 45(12), 2253–2270 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Texts in Applied Mathematics, vol. 49. Springer, New York (2004)

    Google Scholar 

  • Bullo, F., Lewis, A.: Reduction, linearization, and stability of relative equilibria for mechanical systems on Riemannian manifolds. Acta Appl. Math. 99, 53–95 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Chaturvedi, N., Lee, T., Leok, M., McClamroch, N.: Nonlinear dynamics of the 3D pendulum. J. Nonlinear Sci. 21, 3–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  • Christensen, G.S., El-Hawary, E., Soliman, S.A.: Optimal Control Applications in Electric Power Systems. Mathematical Concepts and Methods in Science and Engineering, vol. 35. Plenum, New York (1987)

    MATH  Google Scholar 

  • Conley, C.: Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, 732–746 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  • Dellnitz, M., Froyland, G., Junge, O.: The algorithms behind GAIO—set oriented numerical methods for dynamical systems. In: Fiedler, B. (ed.) Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp. 145–174. Springer, Berlin (2001)

    Chapter  Google Scholar 

  • Dellnitz, M., Junge, O., Post, M., Thiere, B.: On target for Venus—set oriented computation of energy efficient low thrust trajectories. Celest. Mech. Dyn. Astron. 95, 357–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Dellnitz, M., Ober-Blöbaum, S., Post, M., Schütze, O., Thiere, B.: A multi-objective approach to the design of low thrust space trajectories using optimal control. Celest. Mech. Dyn. Astron. 105, 33–59 (2009). doi:10.1007/s10569-009-9229-y

    Article  MATH  Google Scholar 

  • Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  • Flaßkamp, K., Ober-Blöbaum, S.: Energy efficient control for mechanical systems based on inherent dynamical structures. In: American Control Conference (ACC), June 2012, Montréal, Canada, pp. 2609–2614 (2012)

    Google Scholar 

  • Flaßkamp, K., Ober-Blöbaum, S., Kobilarov, M.: Solving optimal control problems by using inherent dynamical properties. PAMM 10(1), 577–578 (2010)

    Article  Google Scholar 

  • Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans. Robot. 21(6), 1077–1091 (2005)

    Article  Google Scholar 

  • Froyland, G., Padberg, K.: Almost-invariant sets and invariant manifolds—connecting probabilistic and geometric descriptions of coherent structures in flows. Physica D 238(16), 1507–1523 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Gerdts, M.: Solving mixed-integer optimal control problems by branch & bound: a case study from automobile test-driving with gear shift. Optim. Control Appl. Methods 26(1), 1–18 (2005)

    Article  MathSciNet  Google Scholar 

  • Gill, P.E., Jay, L.O., Leonard, M.W., Petzold, L.R., Sharma, V.: An SQP method for the optimal control of large-scale dynamical systems. J. Comput. Appl. Math. 120, 197–213 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial three-body problem. Nonlinearity 17, 1571–1606 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edn. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, Berlin (1983)

    MATH  Google Scholar 

  • Haller, G.: Distinguished material surfaces and coherent structures in 3d fluid flows. Physica D 149, 248–277 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  • Kobilarov, M.: Discrete geometric motion control of autonomous vehicles. PhD thesis, University of Southern California, USA (2008)

  • Kobilarov, M.: Cross-entropy randomized motion planning. In: Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011

    Google Scholar 

  • Kobilarov, M., Marsden, J.E.: Discrete geometric optimal control on Lie groups. IEEE Trans. Robot. 27(4), 641–655 (2011)

    Article  Google Scholar 

  • Kobilarov, M., Marsden, J.E., Sukhatme, G.S.: Geometric discretization of nonholonomic systems with symmetries. Discrete Contin. Dyn. Syst., Ser. S 3(1), 61–84 (2010)

    MathSciNet  MATH  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Shoot the Moon. Spacefl. Mech. 105(2), 1017–1030 (2000)

    MathSciNet  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the Moon. Celest. Mech. Dyn. Astron. 81(1–2), 63–73 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J., Vladimirsky, A., Dellnitz, M., Junge, O.: A survey of methods for computing (un)stable manifolds of vector fields. Int. J. Bifurc. Chaos Appl. Sci. Eng. 15(3), 763–791 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  • Leyendecker, S., Ober-Blöbaum, S., Marsden, J.E., Ortiz, M.: Discrete mechanics and optimal control for constrained systems. In: Optimal Control, Applications and Methods, 2009

  • Marsden, J.E.: Lectures on Mechanics. London Mathematical Society Lecture Note Series, vol. 174. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  • Marsden, J.E.: Geometric Mechanics, Stability, and Control, pp. 265–291. Springer, New York (1994)

    Google Scholar 

  • Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Text in Applied Mathematics, vol. 17. Springer, Berlin (1999)

    MATH  Google Scholar 

  • Marsden, J.E., Scheurle, J.: Lagrangian reduction and the double spherical pendulum. Z. Angew. Math. Phys. 44 (1993)

  • Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199, 351–395 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J.E., Ratiu, T.S., Scheurle, J.: Reduction theory and the Lagrange–Routh equations. J. Math. Phys. 41, 3379–3429 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • McGehee, R.: Some homoclinic orbits for the restricted three-body problem. PhD thesis, University of Wisconsin (1969)

  • Naldi, R., Marconi, L.: Optimal transition maneuvers for a class of V/STOL aircraft. Automatica 47(5), 870–879 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numer. 13, 271–369 (2004)

    Article  MathSciNet  Google Scholar 

  • Ober-Blöbaum, S., Walther, A.: Computation of derivatives for structure preserving optimal control using automatic differentiation. PAMM 10(1), 585–586 (2010)

    Article  Google Scholar 

  • Ober-Blöbaum, S., Junge, O., Marsden, J.E.: Discrete mechanics and optimal control: an analysis. Control Optim. Calc. Var. 17(2), 322–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Osinga, H.M., Rokni Lamooki, G.R., Townley, S.: Numerical approximations of strong (un)stable manifolds. Dyn. Syst. 19(3), 195–215 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, M., Wulff, C., Lamb, J.S.W.: Hamiltonian systems near relative equilibria. J. Differ. Equ. 179(2), 562–604 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Serban, R., Koon, W.S., Lo, M.W., Marsden, J.E., Petzold, L.R., Ross, S.D., Wilson, R.S.: Halo orbit mission correction maneuvers using optimal control. Automatica 38, 571–583 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C., Lewis, D., Marsden, J.E.: Stability of relative equilibria. Part I: the reduced energy-momentum method. Arch. Ration. Mech. Anal. 115, 15–59 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Sussmann, H.J., Willems, J.C.: 300 years of optimal control: from the Brachystochrone to the maximum principle. IEEE Control Syst. 17(3), 32–44 (1997)

    Article  Google Scholar 

  • Wulff, C., Schilder, F.: Numerical bifurcation of Hamiltonian relative periodic orbits. SIAM J. Appl. Dyn. Syst. 8(3), 931–966 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization. Springer Optimization and Its Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

Jerry Marsden has been a great inspiration to us to work on this topic. We thank him for fruitful discussions and collaborations during the last years. This contribution was partly developed and published in the course of the Collaborative Research Centre 614 “Self-Optimizing Concepts and Structures in Mechanical Engineering” funded by the German Research Foundation (DFG) under grant number SFB 614.

M. Kobilarov was supported by the Keck Institute for Space Studies, Caltech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Ober-Blöbaum.

Additional information

Communicated by Oliver Junge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flaßkamp, K., Ober-Blöbaum, S. & Kobilarov, M. Solving Optimal Control Problems by Exploiting Inherent Dynamical Systems Structures. J Nonlinear Sci 22, 599–629 (2012). https://doi.org/10.1007/s00332-012-9140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-012-9140-7

Keywords

Mathematics Subject Classification

Navigation