Skip to main content
Log in

On the Vanishing Electron-Mass Limit in Plasma Hydrodynamics in Unbounded Media

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider the zero-electron-mass limit for the Navier–Stokes–Poisson system in unbounded spatial domains. Assuming smallness of the viscosity coefficient and ill-prepared initial data, we show that the asymptotic limit is represented by the incompressible Navier–Stokes system, with a Brinkman damping, in the case when viscosity is proportional to the electron-mass, and by the incompressible Euler system provided the viscosity is dominated by the electron mass. The proof is based on the RAGE theorem and dispersive estimates for acoustic waves, and on the concept of suitable weak solutions for the compressible Navier–Stokes system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alazard, T.: Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions. Adv. Differ. Equ. 10(1), 19–44 (2005)

    MathSciNet  MATH  Google Scholar 

  • Alì, G., Chen, L.: The zero-electron-mass limit in the hydrodynamic model for plasmas. Nonlinearity 24, 2745–2761 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Alì, G., Chen, L., Jüngel, A., Peng, Y.-J.: The zero-electron-mass limit in the hydrodynamic model for plasmas. Nonlinear Anal. 72, 4415–4427 (2010)

    Article  MathSciNet  Google Scholar 

  • Anile, A.M., Pennisi, S.: Thermodynamics derivation of the hydrodynamical model for charge transport in semiconductors. Phys. Rev. B 46, 186–193 (1992)

    Article  Google Scholar 

  • Bucur, D., Feireisl, E.: The incompressible limit of the full Navier–Stokes–Fourier system on domains with rough boundaries. Nonlinear Anal., Real World Appl. 10, 3203–3229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, D.: Remarks on the blow-up of the Euler equations and the related equations. Commun. Math. Phys. 245(3), 539–550 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, L., Chen, X., Zhang, C.: Vanishing electron mass limit in the bipolar Euler–Poisson system. Nonlinear Anal., Real World Appl. 12(2), 1002–1012 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators: With Applications to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics. Springer, Berlin (1987)

    MATH  Google Scholar 

  • Danchin, R.: Zero Mach number limit for compressible flows with periodic boundary conditions. Am. J. Math. 124, 1153–1219 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • D’Ancona, P., Racke, R.: Evolution equations in non-flat waveguides (2010). arXiv:1010.0817

  • Davies, E.B., Parnovski, L.: Trapped modes in acoustic waveguides. Q. J. Mech. Appl. Math. 51(3), 477–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Farwig, R., Kozono, H., Sohr, H.: An L q-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Feireisl, E., Novotný, A., Petzeltová, H.: Suitable weak solutions to the compressible Navier–Stokes system: from compressible viscous to incompressible inviscid fluid flows. Preprint (2010)

  • Feireisl, E., Novotný, A., Sun, Y.: Suitable weak solutions to the Navier–Stokes equations of compressible viscous fluids. Indiana Univ. Math. J. 60, 611–632 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. (2012). doi:10.1007/s00021-011-0091-9

    Google Scholar 

  • Gallagher, I.: Résultats récents sur la limite incompressible. In: Séminaire Bourbaki, vol. 2003/2004. Astérisque 299, Exp. No. 926, vii, 29–57 (2005)

  • Isozaki, H.: Singular limits for the compressible Euler equation in an exterior domain. J. Reine Angew. Math. 381, 1–36 (1987)

    MathSciNet  MATH  Google Scholar 

  • Jüngel, A., Peng, Y.-J.: A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 17(1), 83–118 (2000)

    Article  MATH  Google Scholar 

  • Jüngel, A., Peng, Y.-J.: A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations. Asymptot. Anal. 28(1), 49–73 (2001)

    MathSciNet  MATH  Google Scholar 

  • Lesky, P.H., Racke, R.: Nonlinear wave equations in infinite waveguides. Commun. Partial Differ. Equ. 28, 1265–1301 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Lighthill, J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  • Masmoudi, N.: Examples of singular limits in hydrodynamics. In: Dafermos, C., Feireisl, E. (eds.) Handbook of Differential Equations, III. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Reshetnyak, Yu.G.: Stability Theorems in Geometry and Analysis. Mathematics and Its Applications, vol. 304. Kluwer Academic, Dordrecht (1994). Translated from the 1982 Russian original by N.S. Dairbekov and V.N. Dyatlov, and revised by the author, Translation edited and with a foreword by S.S. Kutateladze

    MATH  Google Scholar 

  • Ruggeri, T., Trovato, M.: Hyperbolicity in extended thermodynamics of Fermi and Bose gases. Contin. Mech. Thermodyn. 16, 551–576 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Schochet, S.: The mathematical theory of low Mach number flows. Math. Model. Numer. Anal. 39, 441–458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Secchi, P.: Nonstationary flows of viscous and ideal incompressible fluids in a half-plane. Ric. Mat. 34(1), 27–44 (1985)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of E.F. was supported by Grant 201/09/0917 of GA ČR as a part of the general research programme of the Academy of Sciences of the Czech Republic, Institutional Research Plan AV0Z10190503.

The work of A.N. was partially supported by the general research programme of the Academy of Sciences of the Czech Republic, Institutional Research Plan AV0Z10190503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Additional information

Communicated by Robert V. Kohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donatelli, D., Feireisl, E. & Novotný, A. On the Vanishing Electron-Mass Limit in Plasma Hydrodynamics in Unbounded Media. J Nonlinear Sci 22, 985–1012 (2012). https://doi.org/10.1007/s00332-012-9134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-012-9134-5

Keywords

Mathematics Subject Classification

Navigation