Skip to main content
Log in

Cracks in Complex Bodies: Covariance of Tip Balances

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In complex bodies, actions due to substructural changes alter (in some cases drastically) the force driving the tip of macroscopic cracks in quasi-static and dynamic growth, and must be represented directly. Here it is proven that tip balances of standard and substructural interactions are covariant. In fact, the former balance follows from the Lagrangian density’s requirement of invariance with respect to the action of the group of diffeomorphisms of the ambient space to itself, the latter balance accrues from an analogous invariance with respect to the action of a Lie group over the manifold of substructural shapes. The evolution equation of the crack tip can be obtained by exploiting invariance with respect to relabeling the material elements in the reference place. The analysis is developed by first focusing on general complex bodies that admit metastable states with substructural dissipation of viscous-like type inside each material element. Then we account for gradient dissipative effects that induce nonconservative stresses; the covariance of tip balances in simple bodies follows as a corollary. When body actions and boundary data of Dirichlet type are absent, the standard variational description of quasi-static crack growth is simply extended to the case of complex materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps via Γ-convergence. Commun. Pure Appl. Math. 43, 999–1036 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Atkinson, C., Leppington, F.G.: The effect of couple stresses on the tip of a crack. Int. J. Solids Struct. 13, 1103–1122 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • Bagchi, A., Evans, A.G.: The mechanics and the physics of thin film decohesion and its measurement. Interface Sci. 3, 169–193 (1996)

    Article  Google Scholar 

  • Beom, H.G., Atluri, S.N.: Effect of electric fields on fracture behavior of ferroelectric ceramics. J. Mech. Phys. Solids 51, 1107–1125 (2003)

    Article  MATH  Google Scholar 

  • Bloch, A., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.: The Euler–Poincaré equations and double bracket dissipation. Commun. Math. Phys. 174, 1–42 (1996)

    Article  MathSciNet  Google Scholar 

  • Capriz, G.: Continua with Microstructure. Springer, Berlin (1989)

    MATH  Google Scholar 

  • Capriz, G.: Continua with substructure (Part 1). Phys. Mesomech. 3, 5–14 (2000a)

    Google Scholar 

  • Capriz, G.: Continua with substructure (Part 2). Phys. Mesomech. 6, 35–70 (2000b)

    Google Scholar 

  • Capriz, G.: Elementary preamble to a theory of granular gases. Rend. Semin. Mat. Univ. Padova 110, 179–198 (2003)

    MATH  MathSciNet  Google Scholar 

  • Capriz, G., Pseudofluids. In: Capriz, G., Mariano, P.M. (eds.) Material Substructures in Complex Bodies: From Atomic Level to Continuum, pp. 238–261. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Capriz, G., Giovine, P.: On microstructural inertia. Mat. Models Method. Appl. Sci. 7, 211–216 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Capriz, G., Mariano, P.M.: Symmetries and Hamiltonian formalism for complex materials. J. Elast. 72, 57–70 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fracture: existence and approximation results. Arch. Ration. Mech. Anal. 162, 101–135 (2004)

    Article  MathSciNet  Google Scholar 

  • Dal Maso, G., Francfort, G.A., Toader, R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176, 165–225 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Ding, D.-H., Yang, W., Hu, C., Wang, R.: Generalized theory of quasicrystals. Phys. Rev. B 48, 7003–7010 (1993)

    Article  Google Scholar 

  • de Fabritiis, C., Mariano, P.M.: Geometry of interactions in complex bodies. J. Geom. Phys. 54, 301–323 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Elssner, G., Korn, D., Rühle, M.: The influence of interface impurities on fracture energy of UHV diffusion bonded metal–ceramic bicrystals. Scr. Metall. Mat. 31, 1037–1042 (1994)

    Article  Google Scholar 

  • Francfort, G., Marigo, J.-J.: Revisiting brittle fracture as an energy minimizing problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  • Fu, R.K., Zhang, T.-Y.: Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. J. Am. Ceram. Soc. 83, 1215–1218 (2000)

    Article  Google Scholar 

  • Fulton, C.C., Gao, H.: Microstructural modeling of ferroelectric fracture. Acta Mater. 49, 2039–2054 (2001)

    Article  Google Scholar 

  • Gao, H., Zhang, T.-Y., Pin, T.: Local and global energy release rates for an electrically yelded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510 (1997)

    Article  Google Scholar 

  • Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations, vols. I and II. Springer, Berlin (1998)

    Google Scholar 

  • Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003)

    MATH  Google Scholar 

  • Gotay, M.J., Isemberg, J., Marsden, J.E., Montgomery, R., with the collaboration of Śniatycki, J. and Yasskin, P.B.: Momentum maps and classical fields. Part I: Covariant field theory. arXiv. physics/9801019v2 (2003)

  • Green, A.E., Rivlin, R.S.: On Cauchy’s equation of motion. Z. Angew. Math. Phys. 15, 290–293 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  • Gurtin, M.E., Podio Guidugli, P.: Configurational forces and the basic laws of crack propagation. J. Mech. Phys. Solids 44, 905–927 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Gurtin, M.E., Shvartsman, M.M.: Configurational forces and the dynamics of planar cracks in three-dimensional bodies. J. Elast. 48, 167–191 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Jaric, J.: The energy release rate in quasistatic crack propagation and J-integral. Int. J. Solids Struct. 22, 767–778 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Khludnev, A.M.: Invariant integrals in problems of a crack at the locus of inhomogeneity and in contact problems. Dokl. Phys. 49, 603–607 (2004)

    Article  MathSciNet  Google Scholar 

  • Kreher, W.S.: Influence of domain switching zones on the fracture thoughness of ferroelectrics. J. Mech. Phys. Solids 50, 1029–1050 (2002)

    Article  MATH  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Butterworth-Heinmann, Oxford (1986)

    Google Scholar 

  • Landis, C.M.: On the fracture toughness of ferroelectric materials. J. Mech. Phys. Solids 51, 1347–1369 (2003)

    Article  MATH  Google Scholar 

  • Lubarda, V.A., Markescoff, X.: Conservation integrals in couple stress elasticity. J. Mech. Phys. Solids 48, 553–564 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Mariano, P.M.: Multifield theories in mechanics of solids. Adv. Appl. Mech. 38, 1–93 (2002)

    Google Scholar 

  • Mariano, P.M.: Influence of the material substructure on crack propagation: a unified treatment. Proc. R. Soc. Lond. A 461, 371–395 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Mariano, P.M.: Mechanics of quasi-periodic alloys. J. Nonlinear Sci. 16, 45–77 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Mariano, P.M., Modica, G.: Ground states in complex bodies (2007, submitted)

  • Mariano, P.M., Stazi, F.L.: Computational aspects of the mechanics of complex materials. Arch. Comput. Method. Eng. 12, 391–478 (2006)

    Article  MathSciNet  Google Scholar 

  • Mariano, P.M., Stazi, F.L., Gioffrè, M.: Stochastic clustering and self-organization of gross deformation and phason activity in quasicrystals: modeling and simulations. J. Comput. Theor. Nanosci. 3, 478–486 (2006)

    Google Scholar 

  • Marsden, J.E., Hughes, T.R.J.: Mathematical Foundations of Elasticity. Dover, New York (1994)

    Google Scholar 

  • Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1999)

    MATH  Google Scholar 

  • Mikulla, R., Stadler, J., Krul, F., Trebin, H.-R., Gumbsch, P.: Crack propagation in quasicrystals. Phys. Rev. Lett. 81, 3163–3166 (1998)

    Article  Google Scholar 

  • Obrezanova, O., Movchan, A.B., Willis, J.R.: Dynamic stability of a propagating crack. J. Mech. Phys. Solids 50, 2637–2668 (2003)

    Article  MathSciNet  Google Scholar 

  • Oleaga, G.: On the path of a quasi-static crack in mode III. J. Elast. 76, 163–189 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Shen, S., Nishioka, T.: Finite element simulation of impact interfacial crack problem in piezoelectric bimaterials. In: Electromagnetic Mechanics of Solids, pp. 211–227 (2003)

  • Schmicker, D., van Smaalen, S.: Dynamical behavior of aperiodic intergrowth crystals. Int. J. Mod. Phys. B 10, 2049–2080 (1996)

    Article  Google Scholar 

  • Simo, J.C., Marsden, J.E., Krishnaprasad, P.S.: The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods and plates. Arch. Ration. Mech. Anal. 104, 125–183 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Stazi, F.L., Budyn, E., Chessa, J., Belytschko, T.: An extended finite element method with higher-order element for crack problems with curvature. Comput. Mech. 31, 38–48 (2002)

    Article  Google Scholar 

  • Stolarska, M., Chopp, D.L., Moës, N., Belytschko, T.: Modelling crack growth by level sets and the extended finite element method. Int. J. Numer. Method. Eng. 51, 943–960 (2001)

    Article  MATH  Google Scholar 

  • Vukobrat, M.D.: Conservation laws in micropolar elastodynamics and path-independent integrals. Int. J. Eng. Sci. 27, 1093–1106 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Wei, Y., Hutchinson, J.W.: Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J. Mech. Phys. Solids 45, 1253–1273 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Willis, J.R., Movchan, A.B.: Three-dimensional dynamic perturbation of a propagating crack. J. Mech. Phys. Solids 45, 591–610 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Yavari, A., Marsden, J.E., Ortiz, M.: On spatial and material covariant balance laws in elasticity. J. Math. Phys. 47, 042903 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Maria Mariano.

Additional information

To the memory of my friend Dusan Krajcinovic, an elegant scholar, a true gentleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariano, P.M. Cracks in Complex Bodies: Covariance of Tip Balances. J Nonlinear Sci 18, 99–141 (2008). https://doi.org/10.1007/s00332-007-9008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-007-9008-4

Keywords

Mathematics Subject Classification (2000)

Navigation