Skip to main content
Log in

Predicting meningioma grades and pathologic marker expression via deep learning

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To establish a deep learning (DL) model for predicting tumor grades and expression of pathologic markers of meningioma.

Methods

A total of 1192 meningioma patients from two centers who underwent surgical resection between September 2018 and December 2021 were retrospectively included. The pathological data and post-contrast T1-weight images for each patient were collected. The patients from institute I were subdivided into training, validation, and testing sets, while the patients from institute II served as the external testing cohort. The fine-tuned ResNet50 model based on transfer learning was adopted to classify WHO grade in the whole cohort and predict Ki-67 index, H3K27me3, and progesterone receptor (PR) status of grade 1 meningiomas. The predictive performance was evaluated by the accuracy and loss curve, confusion matrix, receiver operating characteristic curve (ROC), and area under curve (AUC).

Results

The DL prediction model for each label achieved high predictive performance in two cohorts. For WHO grade prediction, the area under the curve (AUC) was 0.966 (95%CI 0.957–0.975) in the internal testing set and 0.669 (95%CI 0.643–0.695) in the external validation cohort. The AUC in predicting Ki-67 index, H3K27me3, and PR status were 0.905 (95%CI 0.895–0.915), 0.773 (95%CI 0.760–0.786), and 0.771 (95%CI 0.750–0.792) in the internal testing set and 0.591 (95%CI 0.562–0.620), 0.658 (95%CI 0.648–0.668), and 0.703 (95%CI 0.674–0.732) in the external validation cohort, respectively.

Conclusion

DL models can preoperatively predict meningioma grades and pathologic marker expression with favorable predictive performance.

Clinical relevance statement

Our DL model could predict meningioma grades and expression of pathologic markers and identify high-risk patients with WHO grade 1 meningioma, which would suggest a more aggressive operative intervention preoperatively and a more frequent follow-up schedule postoperatively.

Key Points

  • WHO grades and some pathologic markers of meningioma were associated with therapeutic strategies and clinical outcomes.

  • A deep learning–based approach was employed to develop a model for predicting meningioma grades and the expression of pathologic markers.

  • Preoperative prediction of meningioma grades and the expression of pathologic markers was beneficial for clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACC:

Accuracy

AUC:

Area under curve

CI:

Confidence interval

CNNs:

Convolutional neural networks

CNS:

Central nervous system

DL:

Deep learning

FC:

Fully connected

GFAP:

Glial fibrillary acidic protein

H3K27me3:

Trimethylation of lysine 27 (K27) of histone H3

IDH:

Isocitrate dehydrogenase

IHC:

Immunohistochemical

MITK:

Medical Imaging Interaction Toolkit

ML:

Machine learning

MRI:

Magnetic resonance imaging

PR:

Progesterone receptor

ROC:

Receiver operating characteristic curve

T1C:

Contrast-enhanced T1-weighted

WHO:

World Health Organization

References

  1. Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2021) CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018. Neuro Oncol 23:iii1-iii105

  2. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldbrunner R, Minniti G, Preusser M et al (2016) EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol 17:e383–e391

    Article  PubMed  Google Scholar 

  4. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  CAS  PubMed  Google Scholar 

  5. Khanna O, Fathi Kazerooni A, Farrell CJ et al (2021) Machine learning using multiparametric magnetic resonance imaging radiomic feature analysis to predict Ki-67 in World Health Organization grade I meningiomas. Neurosurgery 89:928–936

    Article  PubMed  PubMed Central  Google Scholar 

  6. Haddad AF, Young JS, Kanungo I et al (2020) WHO grade I meningioma recurrence: identifying high risk patients using histopathological features and the MIB-1 index. Front Oncol 10:1522

    Article  PubMed  PubMed Central  Google Scholar 

  7. Behling F, Fodi C, Gepfner-Tuma I et al (2021) H3K27me3 loss indicates an increased risk of recurrence in the Tubingen meningioma cohort. Neuro Oncol 23:1273–1281

    Article  PubMed  Google Scholar 

  8. Gehring M, Reik W, Henikoff S (2009) DNA demethylation by DNA repair. Trends Genet 25:82–90

    Article  CAS  PubMed  Google Scholar 

  9. Ngollo M, Lebert A, Daures M et al (2017) Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression. BMC Cancer 17:261

    Article  PubMed  PubMed Central  Google Scholar 

  10. Katz LM, Hielscher T, Liechty B et al (2018) Loss of histone H3K27me3 identifies a subset of meningiomas with increased risk of recurrence. Acta Neuropathol 135:955–963

    Article  CAS  PubMed  Google Scholar 

  11. Nassiri F, Wang JZ, Singh O et al (2021) Loss of H3K27me3 in meningiomas. Neuro Oncol 23:1282–1291

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maiuri F, Mariniello G, de Divitiis O et al (2021) Progesterone receptor expression in meningiomas: pathological and prognostic implications. Front Oncol 11:611218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pravdenkova S, Al-Mefty O, Sawyer J, Husain M (2006) Progesterone and estrogen receptors: opposing prognostic indicators in meningiomas. J Neurosurg 105:163–173

    Article  CAS  PubMed  Google Scholar 

  14. Abdel Razek AAK, Alksas A, Shehata M et al (2021) Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging 12:152

    Article  PubMed  PubMed Central  Google Scholar 

  15. Levine AB, Schlosser C, Grewal J, Coope R, Jones SJM, Yip S (2019) Rise of the machines: advances in deep learning for cancer diagnosis. Trends Cancer 5:157–169

    Article  PubMed  Google Scholar 

  16. Yi Z, Long L, Zeng Y, Liu Z (2021) Current advances and challenges in radiomics of brain tumors. Front Oncol 11:732196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu Y, Man C, Gong L et al (2019) A deep learning radiomics model for preoperative grading in meningioma. Eur J Radiol 116:128–134

    Article  PubMed  Google Scholar 

  18. Chen C, Cheng Y, Xu J et al (2021) Automatic meningioma segmentation and grading prediction: a hybrid deep-learning method. J Pers Med 11(8):786

    Article  PubMed  PubMed Central  Google Scholar 

  19. Behling F, Fodi C, Wang S et al (2021) Increased proliferation is associated with CNS invasion in meningiomas. J Neurooncol 155:247–254

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sun K, Zhang J, Liu Z et al (2022) A deep learning radiomics analysis for identifying sinus invasion in patients with meningioma before operation using tumor and peritumoral regions. Eur J Radiol 149:110187

    Article  PubMed  Google Scholar 

  21. Chen H, Li S, Zhang Y et al (2022) Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study. Eur Radiol. 32(10):7248–7259

    Article  PubMed  Google Scholar 

  22. Zhang B, Chang K, Ramkissoon S et al (2017) Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol 19:109–117

    Article  CAS  PubMed  Google Scholar 

  23. Gao M, Huang S, Pan X, Liao X, Yang R, Liu J (2020) Machine learning-based radiomics predicting tumor grades and expression of multiple pathologic biomarkers in gliomas. Front Oncol 10:1676

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu C, Zheng H, Li J et al (2022) MRI-based radiomics signature and clinical factor for predicting H3K27M mutation in pediatric high-grade gliomas located in the midline of the brain. Eur Radiol 32:1813–1822

    Article  CAS  PubMed  Google Scholar 

  25. Perez-Garcia F, Sparks R, Ourselin S (2021) TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput Methods Programs Biomed 208:106236

    Article  PubMed  PubMed Central  Google Scholar 

  26. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770-778

  27. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2020) Grad-CAM: visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision 128:336–359

    Article  Google Scholar 

  28. Nowosielski M, Galldiks N, Iglseder S et al (2017) Diagnostic challenges in meningioma. Neuro Oncol 19:1588–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gu H, Zhang X, di Russo P, Zhao X, Xu T (2020) The current state of radiomics for meningiomas: promises and challenges. Front Oncol 10:567736

    Article  PubMed  PubMed Central  Google Scholar 

  30. Coroller TP, Bi WL, Huynh E et al (2017) Radiographic prediction of meningioma grade by semantic and radiomic features. PLoS One 12:e0187908

  31. Chen C, Guo X, Wang J, Guo W, Ma X, Xu J (2019) The diagnostic value of radiomics-based machine learning in predicting the grade of meningiomas using conventional magnetic resonance imaging: a preliminary study. Front Oncol 9:1338

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang H, Mo J, Jiang H et al (2021) Deep learning model for the automated detection and histopathological prediction of meningioma. Neuroinformatics 19:393–402

    Article  PubMed  Google Scholar 

  33. Zhu H, Fang Q, He H, Hu J, Jiang D, Xu K (2019) Automatic prediction of meningioma grade image based on data amplification and improved convolutional neural network. Comput Math Methods Med 2019:7289273

    Article  PubMed  PubMed Central  Google Scholar 

  34. Oya S, Kawai K, Nakatomi H, Saito N (2012) Significance of Simpson grading system in modern meningioma surgery: integration of the grade with MIB-1 labeling index as a key to predict the recurrence of WHO Grade I meningiomas. J Neurosurg 117:121–128

    Article  PubMed  Google Scholar 

  35. Hua L, Wang D, Zhu H et al (2020) Long-term outcomes of multimodality management for parasagittal meningiomas. J Neurooncol 147:441–450

    Article  PubMed  Google Scholar 

  36. Nowak-Choi K, Palmer JD, Casey J et al (2021) Resected WHO grade I meningioma and predictors of local control. J Neurooncol 152:145–151

    Article  PubMed  Google Scholar 

  37. Zhao Y, Xu J, Chen B, Cao L, Chen C (2022) Efficient prediction of Ki-67 proliferation index in meningiomas on MRI: from traditional radiological findings to a machine learning approach. Cancers (Basel) 14(15):3637

    Article  CAS  PubMed  Google Scholar 

  38. Roser F, Nakamura M, Bellinzona M, Rosahl SK, Ostertag H, Samii M (2004) The prognostic value of progesterone receptor status in meningiomas. J Clin Pathol 57:1033–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuroi Y, Matsumoto K, Shibuya M, Kasuya H (2018) Progesterone receptor is responsible for benign biology of skull base meningioma. World Neurosurg 118:e918–e924

    Article  PubMed  Google Scholar 

  40. Claus EB, Park PJ, Carroll R, Chan J, Black PM (2008) Specific genes expressed in association with progesterone receptors in meningioma. Cancer Res 68:314–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karsy M, Azab MA, Abou-Al-Shaar H et al (2018) Clinical potential of meningioma genomic insights: a practical review for neurosurgeons. Neurosurg Focus 44(6):E10

    Article  PubMed  Google Scholar 

  42. Bell DW, Brannigan BW, Matsuo K et al (2008) Increased prevalence of EGFR-mutant lung cancer in women and in East Asian populations: analysis of estrogen-related polymorphisms. Clin Cancer Res 14:4079–4084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Woerl AC, Eckstein M, Geiger J et al (2020) Deep learning predicts molecular subtype of muscle-invasive bladder cancer from conventional histopathological slides. Eur Urol 78:256–264

    Article  CAS  PubMed  Google Scholar 

  44. Li Z, Zhang J, Tan T et al (2021) Deep learning methods for lung cancer segmentation in whole-slide histopathology images-the ACDC@LungHP Challenge 2019. IEEE J Biomed Health Inform 25:429–440

    Article  PubMed  Google Scholar 

  45. Janowczyk A, Madabhushi A (2016) Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J Pathol Inform 7:29

    Article  PubMed  PubMed Central  Google Scholar 

  46. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  CAS  PubMed  Google Scholar 

  47. Oguz C, Yaganoglu M (2022) Detection of COVID-19 using deep learning techniques and classification methods. Inf Process Manag 59:103025

    Article  PubMed  PubMed Central  Google Scholar 

  48. Reith F, Koran ME, Davidzon G, Zaharchuk G, Alzheimer’s Disease Neuroimaging I (2020) Application of deep learning to predict standardized uptake value ratio and amyloid status on (18)F-florbetapir PET using ADNI data. AJNR Am J Neuroradiol 41:980-986

  49. Yang H, Chen L, Cheng Z et al (2021) Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study. BMC Med 19:80

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The National Natural Science Foundation of China (No. 82072788) (YG), Science and Technology Commission of Shanghai Municipality (No. 22140900200) (YG), and Shanghai Sailing Program (No. 20YF1403900) (LYH) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Xie, Ruiqi Wu or Ye Gong.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Ye Gong.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained (Huashan Hospital, Shanghai Medical College, Fudan University).

Study subjects or cohorts overlap

No study subjects or cohorts overlap.

Methodology

• retrospective

• experimental

• multicenter study

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jiawei Chen, Yanping Xue, and Leihao Ren are co-first authors.

Qing Xie, Ruiqi Wu, and Ye Gong are co-corresponding authors.

Supplementary information

ESM 1

(PDF 121 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Xue, Y., Ren, L. et al. Predicting meningioma grades and pathologic marker expression via deep learning. Eur Radiol (2023). https://doi.org/10.1007/s00330-023-10258-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00330-023-10258-2

Keywords

Navigation