Skip to main content

Advertisement

Log in

Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: A systematic review and meta-analysis

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To systematically review studies concerning imaging-guided minimally-invasive breast cancer treatments.

Methods

An online database search was performed for English-language articles evaluating percutaneous breast cancer ablation. Pooled data and 95% confidence intervals (CIs) were calculated. Technical success, technique efficacy, minor and major complications were analysed, including ablation technique subgroup analysis and effect of tumour size on outcome.

Results

Forty-five studies were analysed, including 1,156 patients and 1,168 lesions. Radiofrequency (n=577; 50%), microwaves (n=78; 7%), laser (n=227; 19%), cryoablation (n=156; 13%) and high-intensity focused ultrasound (HIFU, n=129; 11%) were used. Pooled technical success was 96% (95%CI 94–97%) [laser=98% (95–99%); HIFU=96% (90–98%); radiofrequency=96% (93–97%); cryoablation=95% (90–98%); microwave=93% (81–98%)]. Pooled technique efficacy was 75% (67–81%) [radiofrequency=82% (74–88); cryoablation=75% (51–90); laser=59% (35–79); HIFU=49% (26–74)]. Major complications pooled rate was 6% (4–8). Minor complications pooled rate was 8% (5–13%). Differences between techniques were not significant for technical success (p=0.449), major complications (p=0.181) or minor complications (p=0.762), but significant for technique efficacy (p=0.009). Tumour size did not impact on variables (p>0.142).

Conclusions

Imaging-guided percutaneous ablation techniques of breast cancer have a high rate of technical success, while technique efficacy remains suboptimal. Complication rates are relatively low.

Key Points

Imaging-guided ablation techniques for breast cancer are 96% technically successful.

Overall technique efficacy rate is 75% but largely inhomogeneous among studies.

Overall major and minor complication rates are low (6–8%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J et al (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49:1374–1403

    Article  CAS  PubMed  Google Scholar 

  2. Autier P, Boniol M, La Vecchia C et al (2010) Disparities in breast cancer mortality trends between 30 European countries: retrospective trend analysis of WHO mortality database. BMJ 341:c3620

    Article  PubMed  PubMed Central  Google Scholar 

  3. van Dam PA, Tomatis M, Marotti L et al (2015) The effect of EUSOMA certification on quality of breast cancer care. Eur J Surg Oncol 41:1423–1429

    Article  PubMed  Google Scholar 

  4. Darby S, McGale P, Correa C et al (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378:1707–1716

    Article  CAS  PubMed  Google Scholar 

  5. Moran MS, Schnitt SJ, Giuliano AE et al (2014) Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. J Clin Oncol 32:1507–1515

    Article  PubMed  Google Scholar 

  6. Association of Breast Surgery at Baso 2009 (2009) Surgical guidelines for the management of breast cancer. Eur J Surg Oncol 35(Suppl 1):1–22

    Article  Google Scholar 

  7. Zhao Z, Wu F (2010) Minimally-invasive thermal ablation of early-stage breast cancer: a systematic review. Eur J Surg Oncol 36:1149–1155

    Article  CAS  PubMed  Google Scholar 

  8. von Elm E, Altman DG, Egger M et al (2007) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370:1453–1457

    Article  Google Scholar 

  9. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1:97–111

    Article  PubMed  Google Scholar 

  10. Akimov AB, Seregin VE, Rusanov KV et al (1998) Nd: YAG interstitial laser thermotherapy in the treatment of breast cancer. Lasers Surg Med 22:257–267

    Article  CAS  PubMed  Google Scholar 

  11. Athanassiou E, Sioutopoulou D, Vamvakopoulos N et al (2009) The fat content of small primary breast cancer interferes with radiofrequency-induced thermal ablation. Eur Surg Res Eur Chir Forschung Rech Chir Eur 42:54–58

    CAS  Google Scholar 

  12. Burak WE, Agnese DM, Povoski SP et al (2003) Radiofrequency ablation of invasive breast carcinoma followed by delayed surgical excision. Cancer 98:1369–1376

    Article  PubMed  Google Scholar 

  13. Dowlatshahi K, Francescatti DS, Bloom KJ (2002) Laser therapy for small breast cancers. Am J Surg 184:359–363

    Article  PubMed  Google Scholar 

  14. Dowlatshahi K, Fan M, Gould VE et al (2000) Stereotactically guided laser therapy of occult breast tumors: work-in-progress report. Arch Surg 135:1345–1352

    Article  CAS  PubMed  Google Scholar 

  15. Fornage BD, Sneige N, Ross MI et al (2004) Small (< or = 2-cm) breast cancer treated with US-guided radiofrequency ablation: feasibility study. Radiology 231:215–224

    Article  PubMed  Google Scholar 

  16. Furusawa H, Namba K, Thomsen S et al (2006) Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness. J Am Coll Surg 203:54–63

    Article  PubMed  Google Scholar 

  17. Gianfelice D, Khiat A, Amara M et al (2003) MR imaging-guided focused ultrasound surgery of breast cancer: correlation of dynamic contrast-enhanced MRI with histopathologic findings. Breast Cancer Res Treat 82:93–101

    Article  PubMed  Google Scholar 

  18. Gianfelice D, Khiat A, Boulanger Y et al (2003) Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma. J Vasc Interv Radiol 14:1275–1282

    Article  PubMed  Google Scholar 

  19. Haraldsdóttir KH, Ivarsson K, Götberg S et al (2008) Interstitial laser thermotherapy (ILT) of breast cancer. Eur J Surg Oncol 34:739–745

    Article  PubMed  Google Scholar 

  20. Harries SA, Amin Z, Smith ME et al (1994) Interstitial laser photocoagulation as a treatment for breast cancer. Br J Surg 81:1617–1619

    Article  CAS  PubMed  Google Scholar 

  21. Hayashi AH, Silver SF, van der Westhuizen NG et al (2003) Treatment of invasive breast carcinoma with ultrasound-guided radiofrequency ablation. Am J Surg 185:429–435

    Article  PubMed  Google Scholar 

  22. Hung WK, Mak KL, Ying M, Chan M (2011) Radiofrequency ablation of breast cancer: a comparative study of two needle designs. Breast Cancer 18:124–128

    Article  PubMed  Google Scholar 

  23. Imoto S, Wada N, Sakemura N et al (2009) Feasibility study on radiofrequency ablation followed by partial mastectomy for stage I breast cancer patients. Breast 18:130–134

    Article  PubMed  Google Scholar 

  24. Izzo F, Thomas R, Delrio P et al (2001) Radiofrequency ablation in patients with primary breast carcinoma: a pilot study in 26 patients. Cancer 92:2036–2044

    Article  CAS  PubMed  Google Scholar 

  25. Khatri VP, McGahan JP, Ramsamooj R et al (2007) A phase II trial of image-guided radiofrequency ablation of small invasive breast carcinomas: use of saline-cooled tip electrode. Ann Surg Oncol 14:1644–1652

    Article  PubMed  Google Scholar 

  26. Khiat A, Gianfelice D, Amara M, Boulanger Y (2006) Influence of post-treatment delay on the evaluation of the response to focused ultrasound surgery of breast cancer by dynamic contrast enhanced MRI. Br J Radiol 79:308–314

    Article  CAS  PubMed  Google Scholar 

  27. Littrup PJ, Jallad B, Chandiwala-Mody P et al (2009) Cryotherapy for breast cancer: a feasibility study without excision. J Vasc Interv Radiol 20:1329–1341

    Article  PubMed  Google Scholar 

  28. Medina-Franco H, Soto-Germes S, Ulloa-Gómez JL et al (2008) Radiofrequency ablation of invasive breast carcinomas: a phase II trial. Ann Surg Oncol 15:1689–1695

    Article  PubMed  Google Scholar 

  29. Morin J, Traoré A, Dionne G et al (2004) Magnetic resonance-guided percutaneous cryosurgery of breast carcinoma: technique and early clinical results. Can J Surg 47:347–351

    PubMed  PubMed Central  Google Scholar 

  30. Motoyoshi A, Noguchi M, Earashi M et al (2010) Histopathological and immunohistochemical evaluations of breast cancer treated with radiofrequency ablation. J Surg Oncol 102:385–391

    Article  PubMed  Google Scholar 

  31. Mumtaz H, Hall-Craggs MA, Wotherspoon A et al (1996) Laser therapy for breast cancer: MR imaging and histopathologic correlation. Radiology 200:651–658

    Article  CAS  PubMed  Google Scholar 

  32. Nagashima T, Sakakibara M, Sangai T et al (2009) Surrounding rim formation and reduction in size after radiofrequency ablation for primary breast cancer. Jpn J Radiol 27:197–204

    Article  PubMed  Google Scholar 

  33. Noguchi M, Earashi M, Fujii H et al (2006) Radiofrequency ablation of small breast cancer followed by surgical resection. J Surg Oncol 93:120–128

    Article  PubMed  Google Scholar 

  34. Ohtani S, Kochi M, Ito M et al (2011) Radiofrequency ablation of early breast cancer followed by delayed surgical resection--a promising alternative to breast-conserving surgery. Breast 20:431–436

    Article  PubMed  Google Scholar 

  35. Oura S, Tamaki T, Hirai I et al (2007) Radiofrequency ablation therapy in patients with breast cancers two centimeters or less in size. Breast Cancer 14:48–54

    Article  PubMed  Google Scholar 

  36. Palussière J, Henriques C, Mauriac L et al (2012) Radiofrequency ablation as a substitute for surgery in elderly patients with nonresected breast cancer: pilot study with long-term outcomes. Radiology 264:597–605

    Article  PubMed  Google Scholar 

  37. Pfleiderer SOR, Marx C, Camara O et al (2005) Ultrasound-guided, percutaneous cryotherapy of small (< or = 15 mm) breast cancers. Investig Radiol 40:472–477

    Article  Google Scholar 

  38. Pusztaszeri M, Vlastos G, Kinkel K, Pelte M-F (2007) Histopathological study of breast cancer and normal breast tissue after magnetic resonance-guided cryotherapy ablation. Cryobiology 55:44–51

    Article  PubMed  Google Scholar 

  39. Sabel MS, Kaufman CS, Whitworth P et al (2004) Cryoablation of early-stage breast cancer: work-in-progress report of a multi-institutional trial. Ann Surg Oncol 11:542–549

    Article  PubMed  Google Scholar 

  40. van Esser S, Stapper G, van Diest PJ et al (2009) Ultrasound-guided laser-induced thermal therapy for small palpable invasive breast carcinomas: a feasibility study. Ann Surg Oncol 16:2259–2263

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vargas HI, Dooley WC, Gardner RA et al (2004) Focused microwave phased array thermotherapy for ablation of early-stage breast cancer: results of thermal dose escalation. Ann Surg Oncol 11:139–146

    Article  PubMed  Google Scholar 

  42. Vilar VS, Goldman SM, Ricci MD et al (2012) Analysis by MRI of residual tumor after radiofrequency ablation for early stage breast cancer. AJR Am J Roentgenol 198:W285–W291

    Article  PubMed  Google Scholar 

  43. Wiksell H, Löfgren L, Schässburger K-U et al (2010) Feasibility study on the treatment of small breast carcinoma using percutaneous US-guided preferential radiofrequency ablation (PRFA). Breast 19:219–225

    Article  PubMed  Google Scholar 

  44. Wu F, Wang Z-B, Cao Y-D et al (2007) “Wide local ablation” of localized breast cancer using high intensity focused ultrasound. J Surg Oncol 96:130–136

    Article  PubMed  Google Scholar 

  45. Yamamoto N, Fujimoto H, Nakamura R et al (2011) Pilot study of radiofrequency ablation therapy without surgical excision for T1 breast cancer: evaluation with MRI and vacuum-assisted core needle biopsy and safety management. Breast Cancer 18:3–9

    Article  PubMed  Google Scholar 

  46. Yoshinaga Y, Enomoto Y, Fujimitsu R et al (2013) Image and pathological changes after radiofrequency ablation of invasive breast cancer: a pilot study of nonsurgical therapy of early breast cancer. World J Surg 37:356–363

    Article  PubMed  Google Scholar 

  47. Zhou W, Zha X, Liu X et al (2012) US-guided percutaneous microwave coagulation of small breast cancers: a clinical study. Radiology 263:364–373

    Article  PubMed  Google Scholar 

  48. Schässburger K-U, Löfgren L, Lagerstedt U et al (2014) Minimally-invasive treatment of early stage breast cancer: a feasibility study using radiofrequency ablation under local anesthesia. Breast 23:152–158

    Article  PubMed  Google Scholar 

  49. Waaijer L, Kreb DL, Fernandez Gallardo MA et al (2014) Radiofrequency ablation of small breast tumours: evaluation of a novel bipolar cool-tip application. Eur J Surg Oncol 40:1222–1229

    Article  CAS  PubMed  Google Scholar 

  50. Manenti G, Scarano AL, Pistolese CA et al (2013) Subclinical breast cancer: minimally invasive approaches. Our experience with percutaneous radiofrequency ablation vs. cryotherapy. Breast Care (Basel) 8:356–360

    Article  Google Scholar 

  51. Kinoshita T, Iwamoto E, Tsuda H, Seki K (2011) Radiofrequency ablation as local therapy for early breast carcinomas. Breast Cancer 18:10–17

    Article  PubMed  Google Scholar 

  52. Garbay J-R, Mathieu M-C, Lamuraglia M et al (2008) Radiofrequency thermal ablation of breast cancer local recurrence: a phase II clinical trial. Ann Surg Oncol 15:3222–3226

    Article  PubMed  Google Scholar 

  53. Zippel DB, Papa MZ (2005) The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review. Breast Cancer 12:32–38

    Article  PubMed  Google Scholar 

  54. Zhou W, Jiang Y, Chen L et al (2014) Image and pathological changes after microwave ablation of breast cancer: a pilot study. Eur J Radiol 83:1771–1777

    Article  PubMed  Google Scholar 

  55. Beyaz SG, Ergönenç JŞ, Ergönenç T et al (2016) Postmastectomy pain: a cross-sectional study of prevalence, pain characteristics, and effects on quality of life. Chin Med J (Engl) 129:66–71

    Article  Google Scholar 

  56. Buchholz TA, Somerfield MR, Griggs JJ et al (2014) Margins for breast-conserving surgery with whole-breast irradiation in stage I and II invasive breast cancer: American Society of Clinical Oncology endorsement of the Society of Surgical Oncology/American Society for Radiation Oncology consensus guideline. J Clin Oncol 32:1502–1506

    Article  PubMed  Google Scholar 

  57. Giuliano AE, Dale PS, Turner RR et al (1995) Improved axillary staging of breast cancer with sentinel lymphadenectomy. Ann Surg 222:394–399

  58. Giuliano AE, Hunt KK, Ballman KV et al (2011) Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 305:569–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Di Leo G, Trimboli RM, Benedek A et al (2015) MR imaging for selection of patients for partial breast irradiation: a systematic review and meta-analysis. Radiology 277:716–726

    Article  PubMed  Google Scholar 

  60. Houssami N, Macaskill P, Marinovich ML et al (2010) Meta-analysis of the impact of surgical margins on local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy. Eur J Cancer 46:3219–3232

    Article  PubMed  Google Scholar 

  61. Kurniawan ED, Wong MH, Windle I et al (2008) Predictors of surgical margin status in breast-conserving surgery within a breast screening program. Ann Surg Oncol 15:2542–2549

    Article  PubMed  Google Scholar 

  62. Mauri G, Porazzi E, Cova L et al (2014) Intraprocedural contrast-enhanced ultrasound (CEUS) in liver percutaneous radiofrequency ablation: clinical impact and health technology assessment. Insights Imaging 5:209–216

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mauri G, Cova L, De Beni S, et al (2014) Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 Cases. Cardiovasc Intervent Radiol

  64. Colin C, Devouassoux-Shisheboran M, Sardanelli F (2014) Is breast cancer overdiagnosis also nested in pathologic misclassification? Radiology 273:652–655

    Article  PubMed  Google Scholar 

  65. Livraghi T, Meloni F, Di Stasi M et al (2008) Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: is resection still the treatment of choice? Hepatology 47:82–89

    Article  PubMed  Google Scholar 

  66. Chen M-H, Yang W, Yan K et al (2004) Large liver tumors: protocol for radiofrequency ablation and its clinical application in 110 patients--mathematic model, overlapping mode, and electrode placement process. Radiology 232:260–271

    Article  PubMed  Google Scholar 

  67. Ahmed M, Solbiati L, Brace CL et al (2014) Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update. Radiology 273:241–260

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cavallo Marincola B, Pediconi F, Anzidei M et al (2015) High-intensity focused ultrasound in breast pathology: non-invasive treatment of benign and malignant lesions. Expert Rev Med Devices 12:191–199

    Article  CAS  PubMed  Google Scholar 

  69. Mauri G, Cova L, Monaco CG et al (2016) Benign thyroid nodules treatment using Percutaneous Laser Ablation (PLA) and Radiofrequency Ablation (RFA). Int J Hyperthermia 4:1–17

    Google Scholar 

  70. Livraghi T (2010) Single HCC smaller than 2 cm: surgery or ablation: interventional oncologist’s perspective. J Hepatobiliary Pancreat Sci 17:425–429

    Article  PubMed  Google Scholar 

  71. Clarke M, Stewart L, Pignon JP, Bijnens L (1998) Individual patient data meta-analysis in cancer. Br J Cancer 77:2036–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Clarke MJ, Stewart LA (1997) Meta-analyses using individual patient data. J Eval Clin Pract 3:207–212

    Article  CAS  PubMed  Google Scholar 

  73. Marla S, Stallard S (2009) Systematic review of day surgery for breast cancer. Int J Surg 7:318–323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The scientific guarantor of this publication is Francesco Sardanelli MD. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors has significant statistical expertise. Institutional Review Board approval was not required because the present study did not involve patients. Methodology: Meta-analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Mauri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 6

Funnel plot showing risk of publication bias for technical success (GIF 18 kb)

High Resolution Image (TIF 701 kb)

Supplementary Fig. 7

Funnel plot showing risk of publication bias for technical effectiveness (GIF 17 kb)

High Resolution Image (TIF 689 kb)

Supplementary Fig. 8

Funnel plot showing risk of publication bias for major complications (GIF 15 kb)

High Resolution Image (TIF 638 kb)

Supplementary Fig. 9

Funnel plot showing risk of publication bias for minor complications (GIF 17 kb)

High Resolution Image (TIF 695 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauri, G., Sconfienza, L.M., Pescatori, L.C. et al. Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: A systematic review and meta-analysis. Eur Radiol 27, 3199–3210 (2017). https://doi.org/10.1007/s00330-016-4668-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4668-9

Keywords

Navigation