Skip to main content
Log in

Estimating GFR prior to contrast medium examinations—what the radiologist needs to know!

  • Contrast Media
  • Published:
European Radiology Aims and scope Submit manuscript

A Correction to this article was published on 16 March 2021

This article has been updated

Abstract

Creatinine-based equations to estimate glomerular filtration rate (GFR) are increasingly used in radiological practice and in studies on contrast medium-induced acute kidney injury (CIAKI). Their use is recommended in guidelines and contrast medium textbooks to identify patients at risk of CIAKI or nephrogenic systemic fibrosis. There is also an increased interest in cystatin C-based equations. Adopting GFR equations requires local creatinine and cystatin C assay calibrations to equal those used in developing the equations to avoid overestimation or underestimation of renal function. Methods should preferably be traceable to international standards, and assay traceability should be defined in CIAKI studies. Absolute GFR (mL/min) should be used when dosing contrast media and relating the dose to CIAKI instead of commonly used relative GFR (mL/min/1.73 m2) estimates. Accuracy of creatinine and cystatin C equations (percentage of GFR estimates within 30 % of measured GFR) ranges between 75 % and 85 %. Equations combining creatinine and cystatin C may reach 90 %, an accuracy similar to clearance methods (used as a reference test when developing and validating equations) when compared to the gold standard, renal clearance of inulin. The local laboratory or nephrology experts should be consulted in matters of method calibration and choice of GFR equation.

Key Points

Traceability of creatinine/cystatin C assays used in GFR equations must be defined.

Absolute, not relative, GFR should be used when dosing contrast media.

Consult the local laboratory or nephrologist to choose the proper GFR equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Change history

References

  1. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150

    Article  Google Scholar 

  2. Stacul F, van der Molen AJ, Reimer P et al (2011) Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 21:2527–2541

    Article  PubMed  Google Scholar 

  3. American College of Radiology (2013) ACR Manual on contrast media. Version 9/2013. Available at http://www.acr.org/quality-safety/resources/contrast-manual. Accessed 1 Mar 2015

  4. Owen RJ, Hiremath S, Myers A, Fraser-Hill M, Barrett BJ (2014) Canadian Association of Radiologists consensus guidelines for the prevention of contrast-induced nephropathy: update 2012. Can Assoc Radiol J 65:96–105

    Article  PubMed  Google Scholar 

  5. The Royal College of Radiologists (2015) Standards for intravascular contrast administration to adult patients, 3 edn. BFCR(15)1. Available at https://www.rcr.ac.uk/publications.aspx?PageID=310&PublicationID=425. Accesssed 1 Mar 2015

  6. Bongartz GM, Thomsen HS (2014) Chronic kidney disease, serum creatinine and estimated glomerular filtration rate (eGFR). In: Thomas HS, Webb JAW (eds) Contrast media. Safety issues and ESUR guidelines, 3rd edn. Springer, Heidelberg, pp 73–80

    Chapter  Google Scholar 

  7. Thomsen HS (2009) How to avoid nephrogenic systemic fibrosis: current guidelines in Europe and the United States. Radiol Clin N Am 47:871–875, vii

    Article  PubMed  Google Scholar 

  8. Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR–history, indications, and future research. Clin Biochem 38:1–8

    Article  PubMed  CAS  Google Scholar 

  9. Grubb A (2010) Non-invasive estimation of glomerular filtration rate (GFR). The Lund model: simultaneous use of cystatin C- and creatinine-based GFR-prediction equations, clinical data and an internal quality check. Scand J Clin Lab Invest 70:65–70

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Inker LA, Okparavero A (2011) Cystatin C as a marker of glomerular filtration rate: prospects and limitations. Curr Opin Nephrol Hypertens 20:631–639

    Article  PubMed  CAS  Google Scholar 

  11. Coresh J, Astor BC, McQuillan G et al (2002) Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 39:920–929

    Article  PubMed  CAS  Google Scholar 

  12. Miller WG, Myers GL, Ashwood ER et al (2005) Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med 129:297–304

    PubMed  CAS  Google Scholar 

  13. Myers GL, Miller WG, Coresh J et al (2006) Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 52:5–18

    Article  PubMed  CAS  Google Scholar 

  14. Stevens LA, Manzi J, Levey AS et al (2007) Impact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am J Kidney Dis 50:21–35

    Article  PubMed  CAS  Google Scholar 

  15. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  PubMed  CAS  Google Scholar 

  16. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

    PubMed  CAS  Google Scholar 

  17. Barrett BJ, Katzberg RW, Thomsen HS et al (2006) Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double-blind comparison of iodixanol and iopamidol. Investig Radiol 41:815–821

    Article  CAS  Google Scholar 

  18. Thomsen HS, Morcos SK, Erley CM et al (2008) The ACTIVE trial: comparison on the effects on renal function of iomeprol-400 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Investig Radiol 43:170–178

    Article  CAS  Google Scholar 

  19. Panteghini M (2008) Enzymatic assays for creatinine: time for action. Clin Chem Lab Med 46:567–572

    PubMed  CAS  Google Scholar 

  20. National Kidney Foundation (2014) Frequently asked questions about GFR estimates. Available at https://www.kidney.org/sites/default/files/docs/12-10-4004_abe_faqs_aboutgfrrev1b_singleb.pdf. Accessed 1 Mar 2015

  21. Swedish Council on Health Technology Assessment (2013) Methods to estimate and measure renal function (glomerulär filtration rate). A systematic review [Swedish]. SBU Report 214. Available at http://www.sbu.se/214. Accessed 1 Mar 2015

  22. Swedish Council on Health Technology Assessment (2013) Methods to estimate and measure renal function (glomerulär filtration rate). A systematic review (English Abstract). Report 214. Available at http://www.sbu.se/en/Published/Yellow/Methods-to-Estimate-and-Measure-Renal-Function-Glomerular-Filtration-Rate. Accessed 1 Mar 2015

  23. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39:S1–S266

    Google Scholar 

  24. Levey AS, Inker LA, Coresh J (2014) GFR estimation: from physiology to public health. Am J Kidney Dis 63:820–834

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lott R, Hayton W (1978) Estimation of creatinine clearance from serum creatinine concentration—a review. Drug Intell Clin Pharm 12:140–150

    CAS  Google Scholar 

  26. Frennby B, Sterner G (2002) Contrast media as markers of GFR. Eur Radiol 12:475–484

    Article  PubMed  Google Scholar 

  27. Eriksen BO, Melsom T, Mathisen UD, Jenssen TG, Solbu MD, Toft I (2011) GFR normalized to total body water allows comparisons across genders and body sizes. J Am Soc Nephrol 22:1517–1525

    Article  PubMed  PubMed Central  Google Scholar 

  28. Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38:1933–1953

    PubMed  CAS  Google Scholar 

  29. Sterner G, Wroblewski M, Rosen U (1992) Postprandial increase in serum creatinine in renal transplant recipients. Transpl Int 5:115–117

    Article  PubMed  CAS  Google Scholar 

  30. Duncan L, Heathcote J, Djurdjev O, Levin A (2001) Screening for renal disease using serum creatinine: who are we missing? Nephrol Dial Transplant 16:1042–1046

    Article  PubMed  CAS  Google Scholar 

  31. Jaffe M (1886) Über den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaktion des Kreatinins. Z Physiol Chem 10:391–400

    Google Scholar 

  32. Peake M, Whiting M (2006) Measurement of serum creatinine–current status and future goals. Clin Biochem Rev 27:173–184

    PubMed  PubMed Central  Google Scholar 

  33. Stokes P, O'Connor G (2003) Development of a liquid chromatography-mass spectrometry method for the high-accuracy determination of creatinine in serum. J Chromatogr B Anal Technol Biomed Life Sci 794:125–136

    Article  CAS  Google Scholar 

  34. National Kidney Disease Educational Program (2012) Creatinine standardization recommendations. Available at http://nkdep.nih.gov/lab-evaluation/gfr/creatinine-standardization/recommendations.shtml. Accessed 1 Mar 2015

  35. Kemperman FA, Krediet RT, Arisz L (2002) Formula-derived prediction of the glomerular filtration rate from plasma creatinine concentration. Nephron 91:547–558

    Article  PubMed  CAS  Google Scholar 

  36. Levey AS, Coresh J, Greene T et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254

    Article  PubMed  CAS  Google Scholar 

  37. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ma YC, Zuo L, Chen JH et al (2006) Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol 17:2937–2944

    Article  PubMed  Google Scholar 

  39. Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S (2010) Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis 56:32–38

    Article  PubMed  Google Scholar 

  40. Stevens LA, Claybon MA, Schmid CH et al (2011) Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int 79:555–562

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nyman U, Björk J, Sterner G et al (2006) Standardization of p-creatinine assays and use of lean body mass allow improved prediction of calculated glomerular filtration rate in adults: a new equation. Scand J Clin Lab Invest 66:451–468

    Article  PubMed  CAS  Google Scholar 

  42. Björk J, Grubb A, Sterner G, Nyman U (2011) Revised equations for estimating glomerular filtration rate based on the Lund-Malmö Study cohort. Scand J Clin Lab Invest 71:232–239

    Article  PubMed  Google Scholar 

  43. Schwartz GJ, Munoz A, Schneider MF et al (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gao A, Cachat F, Faouzi M et al (2013) Comparison of the glomerular filtration rate in children by the new revised Schwartz formula and a new generalized formula. Kidney Int 83:524–530

    Article  PubMed  CAS  Google Scholar 

  45. Grubb A, Simonsen O, Sturfelt G, Truedsson L, Thysell H (1985) Serum concentration of cystatin C, factor D and beta 2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand 218:499–503

    Article  PubMed  CAS  Google Scholar 

  46. Tangri N, Stevens LA, Schmid CH et al (2011) Changes in dietary protein intake has no effect on serum cystatin C levels independent of the glomerular filtration rate. Kidney Int 79:471–477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Pöge U, Gerhardt T, Bokenkamp A et al (2004) Time course of low molecular weight proteins in the early kidney transplantation period–influence of corticosteroids. Nephrol Dial Transplant 19:2858–2863

    Article  PubMed  Google Scholar 

  48. Jayagopal V, Keevil BG, Atkin SL, Jennings PE, Kilpatrick ES (2003) Paradoxical changes in cystatin C and serum creatinine in patients with hypo- and hyperthyroidism. Clin Chem 49:680–681

    Article  PubMed  CAS  Google Scholar 

  49. Fricker M, Wiesli P, Brandle M, Schwegler B, Schmid C (2003) Impact of thyroid dysfunction on serum cystatin C. Kidney Int 63:1944–1947

    Article  PubMed  CAS  Google Scholar 

  50. Sjöström P, Tidman M, Jones I (2004) The shorter T1/2 of cystatin C explains the earlier change of its serum level compared to serum creatinine. Clin Nephrol 62:241–242

    Article  PubMed  Google Scholar 

  51. Rickli H, Benou K, Ammann P et al (2004) Time course of serial cystatin C levels in comparison with serum creatinine after application of radiocontrast media. Clin Nephrol 61:98–102

    Article  PubMed  CAS  Google Scholar 

  52. Briguori C, Quintavalle C, Donnarumma E, Condorelli G (2014) Novel biomarkers for contrast-induced acute kidney injury. Biomed Res Int 2014:568738

    Article  PubMed  PubMed Central  Google Scholar 

  53. Briguori C, Visconti G, Rivera NV et al (2010) Cystatin C and contrast-induced acute kidney injury. Circulation 121:2117–2122

    Article  PubMed  CAS  Google Scholar 

  54. Flodin M, Hansson LO, Larsson A (2006) Variations in assay protocol for the Dako cystatin C method may change patient results by 50% without changing the results for controls. Clin Chem Lab Med 44:1481–1485

    Article  PubMed  CAS  Google Scholar 

  55. Hansson LO, Grubb A, Liden A et al (2010) Performance evaluation of a turbidimetric cystatin C assay on different high-throughput platforms. Scand J Clin Lab Invest 70:347–353

    Article  PubMed  CAS  Google Scholar 

  56. Li J, Dunn W, Breaud A, Elliott D, Sokoll LJ, Clarke W (2010) Analytical performance of 4 automated assays for measurement of cystatin C. Clin Chem 56:1336–1339

    Article  PubMed  CAS  Google Scholar 

  57. Blirup-Jensen S, Grubb A, Lindstrom V, Schmidt C, Althaus H (2008) Standardization of Cystatin C: development of primary and secondary reference preparations. Scand J Clin Lab Investig Suppl 241:67–70

    Article  CAS  Google Scholar 

  58. Grubb A, Blirup-Jensen S, Lindstrom V, Schmidt C, Althaus H, Zegers I (2010) First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 48:1619–1621

    Article  PubMed  CAS  Google Scholar 

  59. Zegers I, Auclair G, Schimmel H et al (2010) Certification of cystatin C in the human serum reference material ERM-DA471/IFFCC. European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, EUR 24408 EN, European Communities, Luxembourg. Available at https://ec.europa.eu/jrc/sites/default/files/rm/ERM-DA471_report.pdf. Accessed 1 Mar 2015

  60. Grubb A, Horio M, Hansson LO et al (2014) Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin Chem 60:974–98661

    Article  PubMed  CAS  Google Scholar 

  61. Inker LA, Schmid CH, Tighiouart H et al (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367:20–29

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Chehade H, Cachat F, Jannot AS et al (2014) New combined serum creatinine and cystatin C quadratic formula for GFR assessment in children. Clin J Am Soc Nephrol 9:54–63

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Stevens LA, Zhang Y, Schmid CH (2008) Evaluating the performance of equations for estimating glomerular filtration rate. J Nephrol 21:797–807

    PubMed  PubMed Central  Google Scholar 

  64. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Part 5. Evaluation of laboratory measurements for clinical assessment of kidney disease. Guideline 4. Estimation of GFR. Am J Kidney Dis 39:S76–S92

    Article  Google Scholar 

  65. Soveri I, Berg UB, Björk J et al (2014) Measuring GFR: a systematic review. Am J Kidney Dis 64:411–424

    Article  PubMed  Google Scholar 

  66. Kwong YT, Stevens LA, Selvin E et al (2010) Imprecision of urinary iothalamate clearance as a gold-standard measure of GFR decreases the diagnostic accuracy of kidney function estimating equations. Am J Kidney Dis 56:39–49

    Article  PubMed  PubMed Central  Google Scholar 

  67. Horio M, Yasuda Y, Imai E (2012) Ethnic factors of the glomerular filtration rate estimating equation. Kidney Int 81:799, author reply 799-800

    Article  PubMed  Google Scholar 

  68. Levey AS, Greene T, Schluchter MD et al (1993) Glomerular filtration rate measurements in clinical trials. Modification of Diet in Renal Disease Study Group and the Diabetes Control and Complications Trial Research Group. J Am Soc Nephrol 4:1159–1171

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Perrone RD, Steinman TI, Beck GJ et al (1990) Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. The Modification of Diet in Renal Disease Study. Am J Kidney Dis 16:224–235

    Article  PubMed  CAS  Google Scholar 

  70. Björk J, Grubb A, Nyman U (2009) Variability in diagnostic accuracy can be estimated using simple population weighting. J Clin Epidemiol 62:54–57

    Article  PubMed  Google Scholar 

  71. Björk J, Jones I, Nyman U, Sjöström P (2012) Validation of the Lund-Malmö, Chronic Kidney Disease Epidemiology (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) equations to estimate glomerular filtration rate in a large Swedish clinical population. Scand J Urol Nephrol 46:212–222

    Article  PubMed  Google Scholar 

  72. Nyman U, Grubb A, Larsson A et al (2014) The revised Lund-Malmo GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population. Clin Chem Lab Med 52:815–824

    Article  PubMed  CAS  Google Scholar 

  73. Evans M, van Stralen KJ, Schon S et al (2013) Glomerular filtration rate-estimating equations for patients with advanced chronic kidney disease. Nephrol Dial Transplant 28:2518–2526

    Article  PubMed  Google Scholar 

  74. Bouquegneau A, Vidal-Petiot E, Vrtovsnik F et al (2013) Modification of Diet in Renal Disease versus Chronic Kidney Disease Epidemiology Collaboration equation to estimate glomerular filtration rate in obese patients. Nephrol Dial Transplant 28:iv122–iv130

    Article  PubMed  Google Scholar 

  75. Stevens LA, Coresh J, Feldman HI et al (2007) Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol 18:2749–2757

    Article  PubMed  Google Scholar 

  76. Stevens LA, Schmid CH, Zhang YL et al (2010) Development and validation of GFR-estimating equations using diabetes, transplant and weight. Nephrol Dial Transplant 25:449–457

    Article  PubMed  PubMed Central  Google Scholar 

  77. Björk J, Grubb A, Larsson A et al (2015) Accuracy of GFR estimating equations combining standardized cystatin C and creatinine assays: a cross-sectional study in Sweden. Clin Chem Lab Med 53:403–414

    Article  PubMed  Google Scholar 

  78. Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K (2012) Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 156:785–795

    Article  PubMed  Google Scholar 

  79. Kristensen K, Lindstrom V, Schmidt C et al (2007) Temporal changes of the plasma levels of cystatin C, beta-trace protein, beta2-microglobulin, urate and creatinine during pregnancy indicate continuous alterations in the renal filtration process. Scand J Clin Lab Invest 67:612–618

    Article  PubMed  CAS  Google Scholar 

  80. Delanaye P, Cavalier E, Cristol JP, Delanghe JR (2014) Calibration and precision of serum creatinine and plasma cystatin C measurement: impact on the estimation of glomerular filtration rate. J Nephrol 25:467–475

    Article  Google Scholar 

  81. Kuster N, Cristol JP, Cavalier E et al (2014) Enzymatic creatinine assays allow estimation of glomerular filtration rate in stages 1 and 2 chronic kidney disease using CKD-EPI equation. Clin Chim Acta 428:89–95

    Article  PubMed  CAS  Google Scholar 

  82. Grubb A, Nyman U, Björk J (2012) Improved estimation of glomerular filtration rate (GFR) by comparison of eGFRcystatin C and eGFRcreatinine. Scand J Clin Lab Invest 72:73–77

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Nyman U, Björk J, Lindström V, Grubb A (2008) The Lund-Malmö creatinine-based glomerular filtration rate prediction equation for adults also performs well in children. Scand J Clin Lab Invest 68:568–576

    Article  PubMed  CAS  Google Scholar 

  84. Sherwin PF, Cambron R, Johnson JA, Pierro JA (2005) Contrast dose-to-creatinine clearance ratio as a potential indicator of risk for radiocontrast-induced nephropathy: correlation of D/CrCL with area under the contrast concentration-time curve using iodixanol. Investig Radiol 40:598–603

    Article  CAS  Google Scholar 

  85. Chen M-L, Lekso L, Williams R (2001) Measures of exposure versus measures of rate and extent of absorption. Clin Pharmacokinet 40:565–572

    Article  PubMed  CAS  Google Scholar 

  86. Nyman U, Almen T, Aspelin P, Hellström M, Kristiansson M, Sterner G (2005) Contrast-medium-induced nephropathy correlated to the ratio between dose in gram iodine and estimated GFR in ml/min. Acta Radiol 46:830–842

    Article  PubMed  CAS  Google Scholar 

  87. DuBois D, DuBois E (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871

    Article  CAS  Google Scholar 

  88. Nyman U, Björk J, Aspelin P, Marenzi G (2008) Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol 49:658–667

    Article  PubMed  CAS  Google Scholar 

  89. Solomon RJ, Natarajan MK, Doucet S et al (2007) Cardiac Angiography in Renally Impaired Patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation 115:3189–3196

    Article  PubMed  Google Scholar 

  90. Kuhn MJ, Chen N, Sahani DV et al (2008) The PREDICT study: a randomized double-blind comparison of contrast-induced nephropathy after low- or iso-osmolar contrast agent exposure. AJR Am J Roentgenol 191:151–157

    Article  PubMed  Google Scholar 

  91. Thomsen HS, Morcos SK (2009) Risk of contrast-medium-induced nephropathy in high-risk patients undergoing MDCT–a pooled analysis of two randomized trials. Eur Radiol 19:891–897

    Article  PubMed  Google Scholar 

  92. Gurm HS, Dixon SR, Smith DE et al (2011) Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol 58:907–914

    Article  PubMed  Google Scholar 

  93. Laskey W (2006) Contrast-induced nephropathy: clinical insights and practical guidance. Am J Cardiol 98:1K–77K

    Article  Google Scholar 

  94. Liu Y, Tan N, Zhou YL, He PC, Luo JF, Chen JY (2012) The contrast medium volume to estimated glomerular filtration rate ratio as a predictor of contrast-induced nephropathy after primary percutaneous coronary intervention. Int Urol Nephrol 44:221–229

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Ulf Nyman. The authors of this manuscript declare relationships with the following companies: Ulf Nyman: Honorarium (financial) for lecturing on contrast media, GE Healthcare and Bracco; reimbursements for GE Healthcare distribute OmniVis in Nordic countries, a computer program to estimate GFR; reimbursement for Advisory Board, GE Healthcare meeting, 21-22 June 2012, Gressy, France. All other authors declare no relationships. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was not required because this is a review paper. Written informed consent was not required for this study because this is a review paper. Methodology: Review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Nyman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material

(DOC 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyman, U., Björk, J., Bäck, SE. et al. Estimating GFR prior to contrast medium examinations—what the radiologist needs to know!. Eur Radiol 26, 425–435 (2016). https://doi.org/10.1007/s00330-015-3842-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3842-9

Keywords

Navigation