Skip to main content

Advertisement

Log in

Automatic detection of osteoporotic vertebral fractures in routine thoracic and abdominal MDCT

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To develop a prototype algorithm for automatic spine segmentation in MDCT images and use it to automatically detect osteoporotic vertebral fractures.

Methods

Cross-sectional routine thoracic and abdominal MDCT images of 71 patients including 8 males and 9 females with 25 osteoporotic vertebral fractures and longitudinal MDCT images of 9 patients with 18 incidental fractures in the follow-up MDCT were retrospectively selected. The spine segmentation algorithm localised and identified the vertebrae T5-L5. Each vertebra was automatically segmented by using corresponding vertebra surface shape models that were adapted to the original images. Anterior, middle, and posterior height of each vertebra was automatically determined; the anterior-posterior ratio (APR) and middle-posterior ratio (MPR) were computed. As the gold standard, radiologists graded vertebral fractures from T5 to L5 according to the Genant classification in consensus.

Results

Using ROC analysis to differentiate vertebrae without versus with prevalent fracture, AUC values of 0.84 and 0.83 were obtained for APR and MPR, respectively (p < 0.001). Longitudinal changes in APR and MPR were significantly different between vertebrae without versus with incidental fracture (ΔAPR: -8.5 % ± 8.6 % versus -1.6 % ± 4.2 %, p = 0.002; ΔMPR: -11.4 % ± 7.7 % versus -1.2 % ± 1.6 %, p < 0.001).

Conclusions

This prototype algorithm may support radiologists in reporting currently underdiagnosed osteoporotic vertebral fractures so that appropriate therapy can be initiated.

Key points

• This spine segmentation algorithm automatically localised, identified, and segmented the vertebrae in MDCT images.

• Osteoporotic vertebral fractures could be automatically detected using this prototype algorithm.

• The prototype algorithm helps radiologists to report underdiagnosed osteoporotic vertebral fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. NIH (2001) Consensus development panel on osteoporosis prevention, diagnosis, and therapy, March 7-29, 2000: highlights of the conference. South Med J 94:569–573

    Google Scholar 

  2. Bleibler F, Konnopka A, Benzinger P, Rapp K, Konig HH (2013) The health burden and costs of incident fractures attributable to osteoporosis from 2010 to 2050 in Germany—a demographic simulation model. Osteoporos Int 24:835–847

    Article  CAS  PubMed  Google Scholar 

  3. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 22:465–475

    Article  PubMed  Google Scholar 

  4. Blake GM, Fogelman I (2010) An update on dual-energy x-ray absorptiometry. Semin Nucl Med 40:62–73

    Article  PubMed  Google Scholar 

  5. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521

    Article  CAS  PubMed  Google Scholar 

  6. McCloskey E, Johansson H, Oden A, Kanis JA (2012) Fracture risk assessment. Clin Biochem 45:887–893

    Article  PubMed  Google Scholar 

  7. Ioannidis G, Papaioannou A, Hopman WM et al (2009) Relation between fractures and mortality: results from the Canadian multicentre osteoporosis study. CMAJ 181:265–271

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323

    Article  CAS  PubMed  Google Scholar 

  9. Melton LJ, Atkinson EJ, Cooper C, O'Fallon WM, Riggs BL (1999) Vertebral fractures predict subsequent fractures. Osteoporos Int 10:214–221

    Article  PubMed  Google Scholar 

  10. Roux C, Fechtenbaum J, Kolta S, Briot K, Girard M (2007) Mild prevalent and incident vertebral fractures are risk factors for new fractures. Osteoporos Int 18:1617–1624

    Article  CAS  PubMed  Google Scholar 

  11. Delmas PD, van de Langerijt L, Watts NB et al (2005) Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 20:557–563

    Article  PubMed  Google Scholar 

  12. Fechtenbaum J, Cropet C, Kolta S, Verdoncq B, Orcel P, Roux C (2005) Reporting of vertebral fractures on spine x-rays. Osteoporos Int 16:1823–1826

    Article  CAS  PubMed  Google Scholar 

  13. Gehlbach SH, Bigelow C, Heimisdottir M, May S, Walker M, Kirkwood JR (2000) Recognition of vertebral fracture in a clinical setting. Osteoporos Int 11:577–582

    Article  CAS  PubMed  Google Scholar 

  14. Williams AL, Al-Busaidi A, Sparrow PJ, Adams JE, Whitehouse RW (2009) Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur J Radiol 69:179–183

    Article  PubMed  Google Scholar 

  15. Gruber M, Dinges J, Muller D, Baum T, Rummeny EJ, Bauer J (2013) Impact of specific training in detecting osteoporotic vertebral fractures on routine chest radiographs. Rofo 185:1074–1080

    Article  CAS  PubMed  Google Scholar 

  16. Bauer JS, Muller D, Ambekar A et al (2006) Detection of osteoporotic vertebral fractures using multidetector CT. Osteoporos Int 17:608–615

    Article  CAS  PubMed  Google Scholar 

  17. Muller D, Bauer JS, Zeile M, Rummeny EJ, Link TM (2008) Significance of sagittal reformations in routine thoracic and abdominal multislice CT studies for detecting osteoporotic fractures and other spine abnormalities. Eur Radiol 18:1696–1702

    Article  PubMed  Google Scholar 

  18. Roberts MG, Pacheco EM, Mohankumar R, Cootes TF, Adams JE (2010) Detection of vertebral fractures in DXA VFA images using statistical models of appearance and a semi-automatic segmentation. Osteoporos Int 21:2037–2046

    Article  CAS  PubMed  Google Scholar 

  19. Roberts MG, Oh T, Pacheco EM, Mohankumar R, Cootes TF, Adams JE (2012) Semi-automatic determination of detailed vertebral shape from lumbar radiographs using active appearance models. Osteoporos Int 23:655–664

    Article  CAS  PubMed  Google Scholar 

  20. Oei L, Rivadeneira F, Ly F et al (2013) Review of radiological scoring methods of osteoporotic vertebral fractures for clinical and research settings. Eur Radiol 23:476–486

    Article  PubMed  Google Scholar 

  21. Guise TA (2006) Bone loss and fracture risk associated with cancer therapy. Oncologist 11:1121–1131

    Article  CAS  PubMed  Google Scholar 

  22. Genant HK, Wu CY, Van Kuyk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  CAS  PubMed  Google Scholar 

  23. Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13:471–482

    Article  PubMed  Google Scholar 

  24. Klinder T, Wolz R, Lorenz C, Franz A, Ostermann J (2008) Spine segmentation using articulated shape models. Med Image Comput Comput Assist Interv 11:227–234

    PubMed  Google Scholar 

  25. Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    Article  CAS  PubMed  Google Scholar 

  26. El Maghraoui A, Mounach A, Rezqi A, Achemlal L, Bezza A, Ghozlani I (2012) Vertebral fracture assessment in asymptomatic men and its impact on management. Bone 50:853–857

    Article  PubMed  Google Scholar 

  27. El Maghraoui A, Rezqi A, Mounach A, Achemlal L, Bezza A, Ghozlani I (2013) Systematic vertebral fracture assessment in asymptomatic postmenopausal women. Bone 52:176–180

    Article  PubMed  Google Scholar 

  28. Jiang G, Eastell R, Barrington NA, Ferrar L (2004) Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15:887–896

    Article  CAS  PubMed  Google Scholar 

  29. Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215

    Article  CAS  PubMed  Google Scholar 

  30. McCloskey EV, Spector TD, Eyres KS et al (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3:138–147

    Article  CAS  PubMed  Google Scholar 

  31. Moltz JH, D'Anastasi M, Kiessling A, dos Pinto SD, Schulke C, Peitgen HO (2012) Workflow-centred evaluation of an automatic lesion tracking software for chemotherapy monitoring by CT. Eur Radiol 22:2759–2767

    Article  PubMed  Google Scholar 

  32. Mastmeyer A, Engelke K, Fuchs C, Kalender WA (2006) A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med Image Anal 10:560–577

    Article  PubMed  Google Scholar 

  33. Engelke K, Mastmeyer A, Bousson V, Fuerst T, Laredo JD, Kalender WA (2009) Reanalysis precision of 3D quantitative computed tomography (QCT) of the spine. Bone 44:566–572

    Article  PubMed  Google Scholar 

  34. Shen H, Litvin A, Alvino C (2008) Localized priors for the precise segmentation of individual vertebras from CT volume data. Med Image Comput Comput Assist Interv 11:367–375

    PubMed  Google Scholar 

  35. Ma J, Lu L, Zhan Y, Zhou X, Salganicoff M, Krishnan A (2010) Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Med Image Comput Comput Assist Interv 13:19–27

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Thomas Netsch, PhD, for supporting the MDCT data management.

The scientific guarantor of this publication is Jan S. Bauer, MD. The authors of this manuscript declare relationships with the following companies: Tobias Klinder, PhD, and Cristian Lorenz, PhD, are employees of Philips. This study received funding by the Deutsche Forschungsgemeinschaft (DFG BA 4085/1-2 (to J.S.B.), BA 4085/2-1 (to J.S.B.), and BA 4906/1-1 (to T.B.)). No complex statistical methods were necessary for this article. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: retrospective, case-control study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Baum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, T., Bauer, J.S., Klinder, T. et al. Automatic detection of osteoporotic vertebral fractures in routine thoracic and abdominal MDCT. Eur Radiol 24, 872–880 (2014). https://doi.org/10.1007/s00330-013-3089-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-3089-2

Keywords

Navigation