Skip to main content

Advertisement

Log in

Dynamic contrast-enhanced magnetic resonance imaging can assess vascularity within fracture non-unions and predicts good outcome

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To prospectively evaluate whether dynamic contrast-enhanced (DCE) MRI can assess vascularity within non-unions and predicts clinical outcome in combination with the clinical Non-Union Scoring System (NUSS).

Methods

Fifty-eight patients with non-unions of extremities on CT underwent 3-T DCE MRI. Signal intensity curves obtained from a region-of-interest analysis were subdivided into those with more intense contrast agent uptake within the non-union than in adjacent muscle (vascularised non-union) and those with similar or less contrast uptake. The pharmacokinetic parameters of the Tofts model K trans, K ep, iAUC and V e were correlated with union at CT 1 year later (n = 49).

Results

Despite inserted osteosynthetic material, DCE parameters could be evaluated in 57 fractures. The sensitivity/specificity of vascularised non-unions as an indicator of good outcome was 83.9 %/50.0 % compared to 96.8 %/33.3 % using NUSS (n = 49). Logistic regression revealed a significant impact of NUSS on outcome (P = 0.04, odds ratio = 0.93). At first examination, median iAUC (initial area under the enhancement curve) for the ratio non-union/muscle was 10.28 in patients with good outcome compared with 3.77 in non-responders (P = 0.023). K trans, K ep and Ve within the non-union were not significantly different initially (n = 57) or 1 year later (n = 19).

Conclusions

DCE MRI can assess vascularity in fracture non-unions. A vascularised non-union correlates with good outcome.

Key points

Dynamic contrast-enhanced magnetic resonance imaging can assess vascularity within bony non-unions.

Vascularised ununited fractures appear better at 1-year CT than poorly vascularised fractures.

Non-union healing after osteosynthesis or osteoinductive drugs fundamentally requires vascularity.

DCE MRI predicts treatment outcome better than the clinical Non-Union Scoring System.

DCE MRI is clinically feasible to predict treatment outcome in bony non-unions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CEUS:

Contrast-enhanced ultrasound

CI:

Confidence interval

CT:

Computed tomography

DCE MRI:

Dynamic contrast-enhanced magnetic resonance imaging

FOV:

Field of view

iAUC:

Initial area under the enhancement curve

K ep :

Constant reflux between extravascular extracellular space and blood plasma

K trans :

Volume transfer constant between blood plasma and extravascular extracellular space

NUSS:

Non-Union Scoring System

ROC:

Receiver operating characteristic

ROI:

Region of interest

STIR:

Short tau inversion recovery

TE:

Echo time

TR:

Repetition time

TSE:

Turbo-spin-echo

V e :

Extravascular extracellular volume fraction

VIBE:

Volume interpolated breath-hold examination

References

  1. Chapman S (1992) The radiological dating of injuries. Arch Dis Child 67:1063–1065

    Article  CAS  PubMed  Google Scholar 

  2. Cruess RL, Dumont J (1975) Fracture healing. Can J Surg 18:403–413

    CAS  PubMed  Google Scholar 

  3. Frost HM (1989) The biology of fracture healing. An overview for clinicians. Part II. Clin Orthop Relat Res 248:294–309

    PubMed  Google Scholar 

  4. Hendrex RW (1992) Fracture healing. In: Rogers LF (ed) Radiology of skeletal trauma, 2nd edn. Churchill Livingstone, New York, pp 203–221

    Google Scholar 

  5. Marsh D (1998) Concepts of fracture union, delayed union, and nonunion. Clin Orthop Relat Res 355:S22–S30

    Article  PubMed  Google Scholar 

  6. Kuhlman JE, Fishman EK, Magid D, Scott WW Jr, Brooker AF, Siegelman SS (1988) Fracture nonunion: CT assessment with multiplanar reconstruction. Radiology 167:483–488

    CAS  PubMed  Google Scholar 

  7. Bhattacharyya T, Bouchard KA, Phadke A, Meigs JB, Kassarjian A, Salamipour H (2006) The accuracy of computed tomography for the diagnosis of tibial nonunion. J Bone Joint Surg Am 88:692–697

    Article  PubMed  Google Scholar 

  8. Calori GM, Mazza E, Colombo M, Ripamonti C, Tagliabue L (2011) Treatment of long bone non-unions with polytherapy: indications and clinical results. Injury 42:587–590

    Article  CAS  PubMed  Google Scholar 

  9. Calori GM, Tagliabue L, Gala L, d’Imporzano M, Peretti G, Albisetti W (2008) Application of rhBMP-7 and platelet-rich plasma in the treatment of long bone non-unions: a prospective randomised clinical study on 120 patients. Injury 39:1391–1402

    Article  CAS  PubMed  Google Scholar 

  10. Friedlaender GE, Perry CR, Cole JD et al (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 83-A:S151–S158

    PubMed  Google Scholar 

  11. Garrison KR, Shemilt I, Donell S et al (2010) Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev 6, CD006950

    PubMed  Google Scholar 

  12. Geesink RG, Hoefnagels NH, Bulstra SK (1999) Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg Br 81:710–718

    Article  CAS  PubMed  Google Scholar 

  13. Giannoudis PV, Einhorn TA, Schmidmaier G, Marsh D (2008) The diamond concept-open questions. Injury 39:S5–S8

    Article  PubMed  Google Scholar 

  14. Govender S, Csimma C, Genant HK et al (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 84-A:2123–2134

    PubMed  Google Scholar 

  15. Schmidmaier G, Schwabe P, Wildemann B, Haas NP (2007) Use of bone morphogenetic proteins for treatment of non-unions and future perspectives. Injury 38:S35–S41

    Article  PubMed  Google Scholar 

  16. Schmidmaier G, Capanna R, Wildemann B, Beque T, Lowenberg D (2009) Bone morphogenetic proteins in critical-size bone defects: what are the options? Injury 40:S39–S43

    Article  PubMed  Google Scholar 

  17. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38:S3–S6

    Article  Google Scholar 

  18. Tzioupis C, Giannoudis PV (2007) Prevalence of long-bone non-unions. Injury 38:S3–S9

    Article  PubMed  Google Scholar 

  19. Calori GM, Phillips M, Jeetle S, Tagliabue L, Giannoudis PV (2008) Classification of non-union: need for a new scoring system? Injury 39:S59–S63

    Article  PubMed  Google Scholar 

  20. Weber BG, Cech O (1976) Pseudoarthrosis: Pathology, biomechanics, therapy, results. Hans Huber, Bern

    Google Scholar 

  21. Calori GM, Giannoudis PV (2011) Enhancement of fracture healing with the diamond concept: the role of the biological chamber. Injury 42:1191–1193

    Article  PubMed  Google Scholar 

  22. Choyke PL, Dwyer AJ, Knopp MV (2003) Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 17:509–520

    Article  PubMed  Google Scholar 

  23. Hawighorst H, Libicher M, Knopp MV, Moehler T, Kauffmann GW, Kaick G (1999) Evaluation of angiogenesis and perfusion of bone marrow lesions: role of semiquantitative and quantitative dynamic MRI. J Magn Reson Imaging 10:286–294

    Article  CAS  PubMed  Google Scholar 

  24. Libicher M, Bernd L, Schenk JP, Madler U, Grenacher L, Kauffmann GW (2001) Characteristic perfusion pattern of osseous giant cell tumor in dynamic contrast-enhanced MRI. Radiologe 41:577–582

    Article  CAS  PubMed  Google Scholar 

  25. Libicher M, Kasperk C, Daniels M, Hosch W, Kauczor HU, Delorme S (2008) Dynamic contrast-enhanced MRI in Paget's disease of bone—correlation of regional microcirculation and bone turnover. Eur Radiol 18:1005–1011

    Article  CAS  PubMed  Google Scholar 

  26. Munk PL, Lee MJ, Janzen DL et al (1998) Gadolinium-enhanced dynamic MRI of the fractured carpal scaphoid: preliminary results. Australas Radiol 42:10–15

    Article  CAS  PubMed  Google Scholar 

  27. Hirata T, Konishiike T, Kawai A, Sato T, Inoue H (2001) Dynamic magnetic resonance imaging of femoral head perfusion in femoral neck fracture. Clin Orthop Relat Res 393:294–301

    Article  PubMed  Google Scholar 

  28. Griffith JF, Yeung DK, Tsang PH et al (2008) Compromised bone marrow perfusion in osteoporosis. J Bone Miner Res 23:1068–1075

    Article  PubMed  Google Scholar 

  29. Yeung DK, Lam SL, Griffith JF et al (2008) Analysis of bone marrow fatty acid composition using high-resolution proton NMR spectroscopy. Chem Phys Lipids 151:103–109

    Article  CAS  PubMed  Google Scholar 

  30. Dyke JP, Aaron RK (2010) Noninvasive methods of measuring bone blood perfusion. Ann N Y Acad Sci 1192:95–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ehrhart N, Kraft S, Conover D, Rosier RN, Schwarz EM (2008) Quantification of massive allograft healing with dynamic contrast enhanced-MRI and cone beam-CT: a pilot study. Clin Orthop Relat Res 466:1897–1904

    Article  PubMed  Google Scholar 

  32. Klaue K, Knothe U, Anton C et al (2009) Bone regeneration in long-bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep. Injury 40:S95–S102

    Article  PubMed  Google Scholar 

  33. Masquelet AC, Begue T (2010) The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 41:27–37

    Article  PubMed  Google Scholar 

  34. Pelissier P, Martin D, Baudet J, Lepreux S, Masquelet AC (2002) Behaviour of cancellous bone graft placed in induced membranes. Br J Plast Surg 55:596–598

    Article  PubMed  Google Scholar 

  35. Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J (2004) Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 22:73–79

    Article  CAS  PubMed  Google Scholar 

  36. Savolaine ER, Ebraheim N (2000) Assessment of femoral neck nonunion with multiplanar computed tomography reconstruction. Orthopedics 23:713–715

    CAS  PubMed  Google Scholar 

  37. Slade JF 3rd, Gillon T (2008) Retrospective review of 234 scaphoid fractures and nonunions treated with arthroscopy for union and complications. Scand J Surg 97:280–289

    PubMed  Google Scholar 

  38. Taylor JS, Tofts PS, Port R et al (1999) MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging 10:903–907

    Article  CAS  PubMed  Google Scholar 

  39. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

  40. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    Article  CAS  PubMed  Google Scholar 

  41. Keramaris NC, Calori GM, Nikolaou VS et al (2008) Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 39:S45–S57

    Article  PubMed  Google Scholar 

  42. Abumunaser LA, Al-Sayyad MJ (2011) Evaluation of the Calori et al nonunion scoring system in a retrospective case series. Orthopedics 34:359. doi:10.3928/01477447-20110317-31

    PubMed  Google Scholar 

  43. Giannoudis PV, Tzioupis C (2005) Clinical applications of BMP-7: the UK perspective. Injury 36:S47–S50

    Article  PubMed  Google Scholar 

  44. Weber MA, Krix M, Delorme S (2007) Quantitative evaluation of muscle perfusion with CEUS and with MR. Eur Radiol 17:2663–2674

    Article  PubMed  Google Scholar 

  45. Slotboom J, Schaer R, Ozdoba C et al (2008) A novel method for analyzing DSCE-images with an application to tumor grading. Invest Radiol 43:843–853

    Article  PubMed  Google Scholar 

  46. Wetzel SG et al (2002) Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 224:797–803

    Article  PubMed  Google Scholar 

  47. Nosàs-Garcia S, Moehler T, Wasser K et al (2005) Dynamic contrast-enhanced MRI for assessing the disease activity of multiple myeloma: a comparative study with histology and clinical markers. J Magn Reson Imaging 22:154–162

    Article  PubMed  Google Scholar 

  48. Shapeero LG, Poffyn B, De Visschere PJ et al (2011) Complications of bone tumors after multimodal therapy. Eur J Radiol 77:51–67

    Article  CAS  PubMed  Google Scholar 

  49. Jans L, De Coninck T, Wittoek R et al (2013) 3 T DCE-MRI assessment of synovitis of the interphalangeal joints in patients with erosive osteoarthritis for treatment response monitoring. Skeletal Radiol 42:255–260

    Article  CAS  PubMed  Google Scholar 

  50. Krix M, Weber MA, Krakowski-Roosen H et al (2005) Assessment of skeletal muscle perfusion using contrast-enhanced ultrasonography. J Ultrasound Med 24:431–441

    PubMed  Google Scholar 

  51. Weber MA, Krakowski-Roosen H, Delorme S et al (2006) Relationship of skeletal muscle perfusion measured by contrast-enhanced ultrasonography to histologic microvascular density. J Ultrasound Med 25:583–591

    PubMed  Google Scholar 

  52. Lang P, Honda G, Roberts T et al (1995) Musculoskeletal neoplasm: perineoplastic edema versus tumor on dynamic postcontrast MR images with spatial mapping of instantaneous enhancement rates. Radiology 197:831–839

    CAS  PubMed  Google Scholar 

  53. Verstraete KL, Lang P (2000) Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol 34:229–246

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-André Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoierer, O., Bloess, K., Bender, D. et al. Dynamic contrast-enhanced magnetic resonance imaging can assess vascularity within fracture non-unions and predicts good outcome. Eur Radiol 24, 449–459 (2014). https://doi.org/10.1007/s00330-013-3043-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-3043-3

Keywords

Navigation