Skip to main content

Advertisement

Log in

Normal parenchymal enhancement patterns in women undergoing MR screening of the breast

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To characterize the kinetic and morphological presentation of normal breast tissue on DCE-MRI in a large cohort of asymptomatic women, and to relate these characteristics to breast tissue density.

Methods

335 consecutive breast MR examinations in 229 asymptomatic women undergoing high-risk screening evaluations based on recommendations from the American Cancer Society including strong family history and genetic predisposition were selected for IRB-approved review (average age 49.2 ± 10.5 years). Breast tissue density was assessed on precontrast T2-weighted images. Parenchymal enhancement pattern (PEP) was qualitatively classified as minimal, homogeneous, heterogeneous or nodular. Quantitative analysis of parenchymal enhancement kinetics (PEK) was performed, including calculation of initial and peak enhancement percentages (E 1 , E peak ), the time to peak enhancement (T peak ) and the signal enhancement ratio (SER).

Results

41.8% of examinations were classified as minimal, 13.7% homogeneous, 23.9% heterogeneous and 21.2% nodular PEP. Women with heterogeneously or extremely dense breasts exhibited a higher proportion of nodular PEP (44.2% (27/61)) and significantly higher E 1 , and E peak (p < 0.003) compared with those with less dense breasts.

Conclusions

Qualitative and quantitative parenchymal enhancement characteristics vary by breast tissue density. In future work, the association between image-derived MR features of the normal breast and breast cancer risk should be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Warner E, Messersmith H, Causer P, Eisen A, Shumak R, Plewes D (2008) Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Intern Med 148:671–679

    PubMed  Google Scholar 

  2. Molleran V, Mahoney MC (2010) The BI-RADS breast magnetic resonance imaging lexicon. Magn Reson Imaging Clin N Am 18:171–185. doi:10.1016/j.mric.2010.02.001, vii

    Article  PubMed  Google Scholar 

  3. Kuhl CK, Bieling HB, Gieseke J et al (1997) Healthy premenopausal breast parenchyma in dynamic contrast-enhanced MR imaging of the breast: normal contrast medium enhancement and cyclical-phase dependency. Radiology 203:137–144

    PubMed  CAS  Google Scholar 

  4. Pfleiderer SO, Sachse S, Sauner D et al (2004) Changes in magnetic resonance mammography due to hormone replacement therapy. Breast Cancer Res 6:R232–R238. doi:10.1186/bcr779

    Article  PubMed  CAS  Google Scholar 

  5. Liu F, Peacock S, DeMartini W, Eby P, Lehman CD (2008) Background parenchymal enhancement on BREAST MRI: characterization and impact on diagnostic accuracy(ed)^(eds). Radiological Society of North America, Chicago

    Google Scholar 

  6. Li H, Giger ML, Jansen SA, Lan L, Bhooshan N, Newstead GM (2009) Computerized breast parenchymal analysis on DCE-MRI.(ed)^(eds) SPIE Medical Imaging Conference

  7. Boyd NF, Martin LJ, Yaffe MJ, Minkin S (2006) Mammographic density: a hormonally responsive risk factor for breast cancer. J Br Menopause Soc 12:186–193. doi:10.1258/136218006779160436

    Article  PubMed  Google Scholar 

  8. Boyd N, Martin L, Gunasekara A et al (2009) Mammographic density and breast cancer risk: evaluation of a novel method of measuring breast tissue volumes. Cancer Epidemiol Biomark Prev 18:1754–1762. doi:10.1158/1055-9965.EPI-09-0107

    Article  Google Scholar 

  9. Boyd NF, Martin LJ, Bronskill M, Yaffe MJ, Duric N, Minkin S (2010) Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst. doi:10.1093/jnci/djq239

    Google Scholar 

  10. Delille JP, Slanetz PJ, Yeh ED, Kopans DB, Garrido L (2005) Physiologic changes in breast magnetic resonance imaging during the menstrual cycle: perfusion imaging, signal enhancement, and influence of the T1 relaxation time of breast tissue. Breast J 11(4):236–241. doi:10.1111/j.1075-122X.2005.21499.x

    Article  PubMed  Google Scholar 

  11. Muller-Schimpfle M, Ohmenhauser K, Stoll P, Dietz K, Claussen CD (1997) Menstrual cycle and age: influence on parenchymal contrast medium enhancement in MR imaging of the breast. Radiology 203:145–149

    PubMed  CAS  Google Scholar 

  12. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354:270–282. doi:10.1056/NEJMra050776

    Article  PubMed  CAS  Google Scholar 

  13. Saslow D, Boetes C, Burke W et al (2007) American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 57:75–89

    Article  PubMed  Google Scholar 

  14. Jansen SA, Shimauchi A, Zak L et al (2009) Kinetic curves of malignant lesions are not consistent across MRI systems: need for improved standardization of breast dynamic contrast-enhanced MRI acquisition. AJR Am J Roentgenol 193(3):832–839. doi:10.2214/AJR.08.2025

    Article  PubMed  Google Scholar 

  15. Esserman L, Hylton N, George T, Weidner N (1999) Contrast-enhanced magnetic resonance imaging to assess tumor histopathology and angiogenesis in breast carcinoma. Breast J 5:13–21

    Article  PubMed  Google Scholar 

  16. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70

    Google Scholar 

  17. Jansen SA, Newstead GM, Abe H, Shimauchi A, Schmidt RA, Karczmar GS (2007) Pure ductal carcinoma in situ: kinetic and morphologic MR characteristics compared with mammographic appearance and nuclear grade. Radiology 245:684–691. doi:10.1148/radiol.2453062061

    Article  PubMed  Google Scholar 

  18. Heywang-Kobrunner SH, Schlegel A, Beck R et al (1993) Contrast-enhanced MRI of the breast after limited surgery and radiation therapy. J Comput Assist Tomogr 17:891–900

    Article  PubMed  CAS  Google Scholar 

  19. Wersebe A, Xydeas T, Clauss T et al (2001) Quantitative assessment of therapy related effects after breast conserving therapy with dynamic MRI of the breast. Rofo 173:1109–1117. doi:10.1055/s-2001-18887

    PubMed  CAS  Google Scholar 

  20. Boston RC, Schnall MD, Englander SA, Landis JR, Moate PJ (2005) Estimation of the content of fat and parenchyma in breast tissue using MRI T1 histograms and phantoms. Magn Reson Imaging 23:591–599. doi:10.1016/j.mri.2005.02.006

    Article  PubMed  Google Scholar 

  21. Nie K, Chang D, Chen JH, Hsu CC, Nalcioglu O, Su MY (2010) Quantitative analysis of breast parenchymal patterns using 3D fibroglandular tissues segmented based on MRI. Med Phys 37:217–226

    Article  PubMed  Google Scholar 

  22. Lorenzen J, Sinkus R, Biesterfeldt M, Adam G (2003) Menstrual-cycle dependence of breast parenchyma elasticity: estimation with magnetic resonance elastography of breast tissue during the menstrual cycle. Invest Radiol 38:236–240. doi:10.1097/01.RLI.0000059544.18910.BD

    PubMed  Google Scholar 

  23. Partridge SC, McKinnon GC, Henry RG, Hylton NM (2001) Menstrual cycle variation of apparent diffusion coefficients measured in the normal breast using MRI. J Magn Reson Imaging 14:433–438. doi:10.1002/jmri.1204

    Article  PubMed  CAS  Google Scholar 

  24. Partridge SC, Murthy RS, Ziadloo A, White SW, Allison KH, Lehman CD (2010) Diffusion tensor magnetic resonance imaging of the normal breast. Magn Reson Imaging 28(3):320–328. doi:10.1016/j.mri.2009.10.003

    Article  PubMed  Google Scholar 

  25. Hattangadi J, Park C, Rembert J et al (2008) Breast stromal enhancement on MRI is associated with response to neoadjuvant chemotherapy. AJR Am J Roentgenol 190:1630–1636. doi:10.2214/AJR.07.2533

    Article  PubMed  Google Scholar 

  26. Kuhl C (2007) The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244:356–378. doi:10.1148/radiol.2442051620

    Article  PubMed  Google Scholar 

  27. Cubuk R, Tasali N, Narin B, Keskiner F, Celik L, Guney S (2010) Correlation between breast density in mammography and background enhancement in MR mammography. Radiol Med 115:434–441. doi:10.1007/s11547-010-0513-4

    Article  PubMed  CAS  Google Scholar 

  28. Ko ES, Lee BH, Choi HY, Kim RB, Noh WC (2010) Background enhancement in breast MR: correlation with breast density in mammography and background echotexture in ultrasound. Eur J Radiol. doi:10.1016/j.ejrad.2010.07.019

    Google Scholar 

  29. Passaperuma K, Warner E, Hill KA, Gunasekara A, Yaffe MJ (2010) Is mammographic breast density a breast cancer risk factor in women with BRCA mutations? J Clin Oncol. doi:10.1200/JCO.2009.27.5933

    PubMed  Google Scholar 

  30. Boyd N, Martin L, Chavez S et al (2009) Breast-tissue composition and other risk factors for breast cancer in young women: a cross-sectional study. Lancet Oncol 10:569–580. doi:10.1016/S1470-2045(09)70078-6

    Article  PubMed  Google Scholar 

  31. Khazen M, Warren RM, Boggis CR et al (2008) A pilot study of compositional analysis of the breast and estimation of breast mammographic density using three-dimensional T1-weighted magnetic resonance imaging. Cancer Epidemiol Biomark Prev 17:2268–2274. doi:10.1158/1055-9965.EPI-07-2547

    Article  Google Scholar 

  32. Lee NA, Rusinek H, Weinreb J et al (1997) Fatty and fibroglandular tissue volumes in the breasts of women 20–83 years old: comparison of X-ray mammography and computer-assisted MR imaging. AJR Am J Roentgenol 168:501–506

    PubMed  CAS  Google Scholar 

  33. Thompson DJ, Leach MO, Kwan-Lim G et al (2009) Assessing the usefulness of a novel MRI-based breast density estimation algorithm in a cohort of women at high genetic risk of breast cancer: the UK MARIBS study. Breast Cancer Res 11(6):R80. doi:10.1186/bcr2447

    Article  PubMed  Google Scholar 

  34. Chen W, Giger ML, Bick U, Newstead GM (2006) Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI. Med Phys 33:2878–2887

    Article  PubMed  Google Scholar 

  35. Collins MJ, Hoffmeister J, Worrell SW (2006) Computer-aided detection and diagnosis of breast cancer. Semin Ultrasound CT MR 27:351–355

    Article  PubMed  Google Scholar 

  36. Hologic (2010) Hologic-Quantra Volumetric Assessment. http://www.hologic.com/en/breast-screening/volumetric-assessment/. Accessed January 31, 2011

  37. Huo Z, Giger ML, Olopade OI et al (2002) Computerized analysis of digitized mammograms of BRCA1 and BRCA2 gene mutation carriers. Radiology 225:519–526

    Article  PubMed  Google Scholar 

  38. Li H, Giger ML, Olopade OI, Margolis A, Lan L, Chinander MR (2005) Computerized texture analysis of mammographic parenchymal patterns of digitized mammograms. Acad Radiol 12:863–873. doi:10.1016/j.acra.2005.03.069

    Article  PubMed  Google Scholar 

  39. Jansen SA, Paunesku T, Fan X et al (2009) Ductal carcinoma in situ: x-ray fluorescence microscopy and dynamic contrast-enhanced MR imaging reveals gadolinium uptake within neoplastic mammary ducts in a murine model. Radiology 253(2):399–406. doi:10.1148/radiol.2533082026

    Article  PubMed  Google Scholar 

  40. Delille JP, Slanetz PJ, Yeh ED, Kopans DB, Halpern EF, Garrido L (2005) Hormone replacement therapy in postmenopausal women: breast tissue perfusion determined with MR imaging–initial observations. Radiology 235:36–41. doi:10.1148/radiol.2351040012

    Article  PubMed  Google Scholar 

  41. Heinig A, Lampe D, Kolbl H, Beck R, Heywang-Kobrunner SH (2002) Suppression of unspecific enhancement on breast magnetic resonance imaging (MRI) by antiestrogen medication. Tumori 88:215–223

    PubMed  CAS  Google Scholar 

  42. Lorenzen J, Welger J, Lisboa BW, Krupski G, Adam G (2003) MR-imaging of the breast at 0.5 Tesla: menstrual-cycle dependency of parenchymal contrast enhancement in healthy volunteers with oral contraceptive use? Rofo 175:502–506. doi:10.1055/s-2003-38449

    PubMed  CAS  Google Scholar 

  43. Reichenbach JR, Przetak C, Klinger G, Kaiser WA (1999) Assessment of breast tissue changes on hormonal replacement therapy using MRI: a pilot study. J Comput Assist Tomogr 23:407–413

    Article  PubMed  CAS  Google Scholar 

  44. Abitbol CL, Warady BA, Massie MD et al (1990) Linear growth and anthropometric and nutritional measurements in children with mild to moderate renal insufficiency: a report of the Growth Failure in Children with Renal Diseases Study. J Pediatr 116:S46–S54

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Segal Foundation and NIH grant P50 CA125183-01 (SPORE) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian M. Newstead.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, S.A., Lin, V.C., Giger, M.L. et al. Normal parenchymal enhancement patterns in women undergoing MR screening of the breast. Eur Radiol 21, 1374–1382 (2011). https://doi.org/10.1007/s00330-011-2080-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2080-z

Keywords

Navigation