Skip to main content
Log in

Radiation dose and risk from fluoroscopically guided percutaneous transluminal angioplasty and stenting in the abdominal region

  • Physics
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The objective of this study was to estimate the radiation dose and associated risks resulting from fluoroscopically guided percutaneous transluminal angioplasty with or without stent placement in the abdominal region. Average examination parameters for renal and aortoiliac procedures were derived using data from 80 consecutive procedures performed in our institute. Organ and effective doses were estimated for endovascular procedures with the use of a Monte Carlo (MC) transport code and an adult mathematical phantom. Thermoluminescent dosimeters were used in an anthropomorphic phantom to verify MC calculations. Radiation-induced risks were estimated. Results are presented as doses normalized to dose area product, so that the patient dose from any technique and X-ray unit can be easily calculated for iliac and renal PTA/stenting sessions. The average effective dose varied from 75 to 371 μSv per Gycm2 depending on the beam quality, procedure scheme and sex of the patient. Differences up to 17% were observed between MC-calculated data and data derived from thermoluminescent dosimetry. The radiation-induced cancer risk may be considerable for younger individuals undergoing transluminal angioplasty with stent placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Spies JB, Bakal CW, Burke DR et al (2003) Angioplasty standard of practice. J Vasc Interv Radiol 14:S219–S221

    PubMed  Google Scholar 

  2. Pentecost MJ, Criqui MH, Dorros et al (2003) Guidelines for peripheral percutaneous transluminal angioplasty of the abdominal aorta and lower extremity vessels. J Vasc Interv Radiol 14:S495–S515

    Article  PubMed  Google Scholar 

  3. Vorwerk D, Gunther RW (2001) Percutaneous interventions for treatment of iliac artery stenoses and occlusions. World J Surg 25:319–326

    Article  PubMed  CAS  Google Scholar 

  4. Olin JW (2004) Renal artery disease: Diagnosis and management. Mt Sinai J Med 71:73–85

    PubMed  Google Scholar 

  5. Simon N, Franklin SS, Bleifer KH, Maxwell MH (1972) Clinical characteristics of renovascular hypertension. JAMA 220:1200–1218

    Article  Google Scholar 

  6. Miller DL, Balter S, Cole PE et al (2003) Radiation doses in interventional radiology procedures: the RAD-IR study. Part I: overall measures of dose. J Vasc Interv Radiol 14:711–727

    PubMed  Google Scholar 

  7. Miller DL, Balter S, Cole PE et al (2003) Radiation doses in interventional radiology procedures: the RAD-IR study. Part II: skin dose. J Vasc Interv Radiol 14:977–990

    PubMed  Google Scholar 

  8. Vano E, Gonzalez L, Fernandez JM, Guibelalde E (1995) Patient dose values in interventional radiology. Br J Radiol 68:1215–1220

    Article  PubMed  CAS  Google Scholar 

  9. Marshall NW, Chapple CL, Kotre CJ (2000) Diagnostic reference levels in interventional radiology. Phys Med Biol 45:3833–3846

    Article  PubMed  CAS  Google Scholar 

  10. Perisinakis K, Raissaki M, Damilakis J, Stratakis J, Neratzoulakis J, Gourtsoyiannis N (2006) Fluoroscopy-controlled voiding cystourethrography in infants and children: are the radiation risks trivial? Eur Radiol 16(4):846–851, Apr

    Article  PubMed  Google Scholar 

  11. Imanishi Y, Fukui A, Niimi H et al (2005) Radiation-induced temporary hair loss as a radiation damage only occurring in patients who had the combination of MDCT and DSA. Eur Radiol 15(1):41–46, Jan

    Article  PubMed  Google Scholar 

  12. International Commission on Radiological Protection (2000) Avoidance of radiation injuries from medical interventional procedures. ICRP Publication 85. In: Ann ICRP 30, Pergamon Press, Oxford

  13. European Commision (1999) Guidance on diagnostic reference levels for medical exposures. Radiation protection 109, Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  14. Food and Drug Administration (1995) Recording information in the patient’s medical record that identifies the potential for serious X-ray induced skin injuries. Center for Devices and Radiological Health, Rockville MD

    Google Scholar 

  15. McParland BJ (1998) Entrance skin dose estimates derived from dose-area product measurements in interventional radiological procedures. Br J Radiol 71:1288–1295

    PubMed  CAS  Google Scholar 

  16. Ruiz Cruces R, Garcia-Granados J, Diaz Romero F, Hernandez Armas J (1998) Estimation of effective dose in some digital angiographic and interventional procedures. Br J Radiol 71:42–47

    PubMed  CAS  Google Scholar 

  17. Gkanatsios NA, Huda, W, Peters KR (2002) Adult patient doses in interventional procedures. Med Phys 29:717–723

    Article  PubMed  Google Scholar 

  18. Struelens L, Vanhavere F, Bosmans H et al (2005) Effective dose in angiography and interventional radiology: Calculation of conversion coefficients for angiography of the lower limbs. Br J Radiol 78:135–142

    Article  PubMed  CAS  Google Scholar 

  19. Stratakis J, Damilakis J, Hatzidakis A et al (2006) Radiation dose and risk from fluoroscopically guided percutaneous biliary procedures. J Vasc Interv Radiol 17:77–84

    Article  PubMed  Google Scholar 

  20. Schultz F, Geleijns J, Spoelstra F, Zoetelief J (2003) Monte Carlo calculations for assessment of radiation dose to patients with congenital heart defects and to staff during cardiac catheterizations. Br J Radiol 76(909):638–647

    Article  PubMed  CAS  Google Scholar 

  21. International Electro-Technical Commission (2000) Report 60601: medical electrical equipment-part 2–43: particular requirements for the safety of X-ray equipment for interventional procedures. IEC 60601-2-43, Geneva, Switzerland

    Google Scholar 

  22. Dormandy JA, Rutherford RB (2000) Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Concensus (TASC). J Vasc Surg. 31:S1–S296

    Article  PubMed  CAS  Google Scholar 

  23. Briesmeister J (ed) (2000) MCNP-a General Monte Carlo N-particle transport code, version 4C2. Los Alamos National Laboratory Report. LA-13709-M, Los Alamos, New Mexico

  24. Eckerman K, Cristy M, Ryman J (1986) The ORNL mathematical phantom series. Oak Ridge National Laboratory (ORNL) Report. Available online at http://homer.hsr.ornl.gov/VLab/VLabPhan.html

  25. Nowotny R, Hofer A (1985) A program for calculating diagnostic X-ray spectra. Rofo 142:685–689

    PubMed  CAS  Google Scholar 

  26. International Commission on Radiological Protection (1990) Recommendations of the International Commission on Radiological Protection. ICRP Publication 60, In: Ann ICRP Vol 21, Oxford: Pergamon Press

  27. International Commision on Radiological Protection (2002) Basic anatomical and physiological data for use in radiological protection: reference values (The International Commission on Radiological Protection, report of the task group on reference man) ICRP Publication 89, Ann ICRP 32, Elsevier Science Ltd, Oxford, UK

    Google Scholar 

  28. Perisinakis K, Theocharopoulos N, Karkavitsas N et al (2002) Patient effective radiation dose and associated risk from transmission scans using Gd-153 line sources in cardiac SPECT studies. Health Phys 83:66–74

    Article  PubMed  CAS  Google Scholar 

  29. Wagner LK (1995) Biological effects of high X-ray dose. In: Balter S, Shope T, eds, Syllabus: A Categorized Course in Physics. Oak Brook, III: Radiological Society of North America, pp 167–170

  30. National Radiological Protection Board (1994) Estimates of radiation detriment in a UK population, NRPB-R260 National Radiological Protection Board, Didcot, UK

    Google Scholar 

  31. Tunis SR, Bass EB, Steinberg EP (1991) The use of angioplasty, bypass surgery and amputation in the management of peripheral vascular disease. N Eng J Med 325:556–562

    Article  CAS  Google Scholar 

  32. Mackrell PJ, Langan EM 3rd, Sullivan TM et al (2003) Management of renal artery stenosis: effects of a shift from surgical to percutaneous therapy on indications and outcomes. Ann Vasc Surg 17:54–59

    Article  PubMed  Google Scholar 

  33. Khosla S et al (2003) Prevalence of renal artery stenosis requiring revascularization in patients initially referred for coronary angiography. Cathet Cardiovasc Interv 58:400–403

    Article  Google Scholar 

  34. Koenig TR, Wolff D, Mettler FA et al (2001) Skin injuries from fluoroscopically guided procedures: Part 1, characteristics of radiation injury. Am J Roentgenol 177:3–11

    CAS  Google Scholar 

  35. McParland BJ (1998) A study of patient radiation doses in interventional radiological procedures. Br J Radiol. 71:175–185

    PubMed  CAS  Google Scholar 

  36. Hart D, Jones G, Wall BF (1994) Estimation of effective dose in diagnostic radiology from entrance surface dose and dose-area product measurements. NRPB-R262, National Radiological Protection Board, Chilton, UK, pp 1–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Damilakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stratakis, J., Damilakis, J., Tsetis, D. et al. Radiation dose and risk from fluoroscopically guided percutaneous transluminal angioplasty and stenting in the abdominal region. Eur Radiol 17, 2359–2367 (2007). https://doi.org/10.1007/s00330-007-0632-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0632-z

Keywords

Navigation