Skip to main content
Log in

Contrast-enhanced dynamic MR nephrography using the TurboFLASH navigator-gating technique in children

  • Pediatric
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The purpose of this work was to test the feasibility of an MR examination protocol for the comprehensive assessment of renal morphology, excretion and split renal function using a navigator-gated TurboFLASH sequence. A navigator-gated T1-weighted single-slice TurboFLASH sequence suitable for dynamic MR urography and nephrography was implemented. A protocol was developed allowing for assessment of urinary excretion and split renal function by recording the renal clearance of a gadolinium (Gd) diethylene-triamine-pentacetic-acid (DTPA) bolus. Ten patients aged between 14 months and 14 years (mean age 4.8±4.6 years) were evaluated with the following indications: pelvicalyceal dilatation (n=4), follow-up after pyeloplasty (n=1), duplex systems (n=3), large renal cyst (n=1), and renal insufficiency (n=1). Dynamic MR urography and MR split renal function were compared to MAG3 scintigraphy. Evaluation of morphology, excretion and function required 50–60 minutes examination time, plus 10 minutes for post-processing. The TurboFLASH sequence yielded image acquisition at nearly identical diaphragm positions allowing for accurate region-of-interest evaluation within the renal parenchyma and the urinary passage. Static and dynamic MR urography showed the morphology of the urinary tract and excretion with sufficient diagnostic imaging quality, and the results were in diagnostic compliance with scintigraphy. MRI and scintigraphy yielded similar results for split renal function with a correlation coefficient of R=0.968 determined by linear regression. Our conclusions were that the method is robust, easy to perform on a clinical 1.5 T MRI system, rapid to evaluate and post-process and, therefore, easy to incorporate into clinical routine. Compared to scintigraphy, the higher spatial resolution of the MR examination provides additional important information improving the management of the pediatric patients without the application of radioactive tracers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peters CA (1995) Urinary tract obstruction in children. J Urol 154:1874–1883

    Article  PubMed  CAS  Google Scholar 

  2. Peters AM (2004) The kinetic basis of glomerular filtration rate measurement and new concepts of indexation to body size. Eur J Nucl Med Mol Imaging 31:137–149

    Article  PubMed  CAS  Google Scholar 

  3. Carvlin MJ, Arger PH, Kundel HL, Axel L, Dougherty L, Kassab EA, Moore B (1989) Use of Gd-DTPA and fast gradient-echo and spin-echo MR imaging to demonstrate renal function in the rabbit. Radiology 170:705–711

    PubMed  CAS  Google Scholar 

  4. Choyke PL, Frank JA, Girton ME, Inscoe SW, Carvlin MJ, Black JL, Austin HA, Dwyer AJ (1989) Dynamic Gd-DTPA-enhanced MR imaging of the kidney: experimental results. Radiology 170:713–720

    PubMed  CAS  Google Scholar 

  5. Kikinis R, von Schulthess GK, Jager P, Durr R, Bino M, Kuoni W, Kubler O (1987) Normal and hydronephrotic kidney: evaluation of renal function with contrast-enhanced MR imaging. Radiology 165:837–842

    PubMed  CAS  Google Scholar 

  6. Knesplova L, Krestin GP (1998) Magnetic resonance in the assessment of renal function. Eur Radiol 8:201–211

    Article  PubMed  CAS  Google Scholar 

  7. Fukuda Y, Watanabe H, Tomita T, Katayama H, Miyano T, Yabuta K (1996) Evaluation of glomerular function in individual kidneys using dynamic magnetic resonance imaging. Pediatr Radiol 26:324–328

    Article  PubMed  CAS  Google Scholar 

  8. Laissy JP, Faraggi M, Lebtahi R, Soyer P, Brillet G, Mery JP, Menu Y, Le Guludec D (1994) Functional evaluation of normal and ischemic kidney by means of gadolinium-DOTA enhanced TurboFLASH MR imaging: a preliminary comparison with 99Tc-MAG3 dynamic scintigraphy. Magn Reson Imaging 12:413–419

    Article  PubMed  CAS  Google Scholar 

  9. Pettigrew RI, Avruch L, Dannels W, Coumans J, Bernardino ME (1986) Fast-field-echo MR imaging with Gd-DTPA: physiologic evaluation of the kidney and liver. Radiology 160:561–563

    PubMed  CAS  Google Scholar 

  10. Semelka RC, Hricak H, Tomei E, Floth A, Stoller M (1990) Obstructive nephropathy: evaluation with dynamic Gd-DTPA-enhanced MR imaging. Radiology 175:797–803

    PubMed  CAS  Google Scholar 

  11. Pedersen M, Shi Y, Anderson P, Stodkilde-Jorgensen H, Djurhuus JC, Gordon I, Frokiaer J (2004) Quantitation of differential renal blood flow and renal function using dynamic contrast-enhanced MRI in rats. Magn Reson Med 51:510–517

    Article  PubMed  Google Scholar 

  12. Grattan-Smith JD, Perez-Bayfield MR, Jones RA, Little S, Broecker B, Smith EA, Scherz HC, Kirsch AJ (2003) MR imaging of kidneys: functional evaluation using F-15 perfusion imaging. Pediatr Radiol 33:293–304

    PubMed  Google Scholar 

  13. Rohrschneider WK, Haufe S, Wiesel M, Tonshoff B, Wunsch R, Darge K, Clorius JH, Troger J (2002) Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static-dynamic MR urography: findings in kidneys with a single collecting system. Radiology 224:683–694

    Article  PubMed  Google Scholar 

  14. Rohrschneider WK, Haufe S, Clorius JH, Troger J (2003) MR to assess renal function in children. Eur Radiol 13:1033–1045

    Article  PubMed  Google Scholar 

  15. Teh HS, Ang ES, Wong WC, Tan SB, Tan AG, Chng SM, Lin MB, Goh JS (2003) MR renography using a dynamic gradient-echo sequence and low-dose gadopentetate dimeglumine as an alternative to radionuclide renography. AJR Am J Roentgenol 181:441–450

    PubMed  Google Scholar 

  16. Thomsen HS (2004) Gadolinium-based contrast media may be nephrotoxic even at approved doses. Eur Radiol 14:1654–1656

    PubMed  Google Scholar 

  17. Rusinek H, Lee VS, Johnson G (2001) Optimal dose of Gd-DTPA in dynamic MR studies. Magn Reson Med 46:312–316

    Article  PubMed  CAS  Google Scholar 

  18. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New York

    Google Scholar 

  19. de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659

    Article  PubMed  Google Scholar 

  20. Aerts P, Van Hoe L, Bosmans H, Oyen R, Marchal G, Baert AL (1996) Breath-hold MR urography using the HASTE technique. AJR Am J Roentgenol 166:543–545

    PubMed  CAS  Google Scholar 

  21. Hattery RR, King BF (1995) Technique and application of MR urography. Radiology 194:25–27

    PubMed  CAS  Google Scholar 

  22. O’Malley ME, Soto JA, Yucel EK, Hussain S (1997) MR urography: evaluation of a three-dimensional fast spin-echo technique in patients with hydronephrosis. AJR Am J Roentgenol 168:387–392

    PubMed  CAS  Google Scholar 

  23. Regan F, Bohlman ME, Khazan R, Rodriguez R, Schultze-Haakh H (1996) MR urography using HASTE imaging in the assessment of ureteric obstruction. AJR Am J Roentgenol 167:1115–1120

    PubMed  CAS  Google Scholar 

  24. O’Reilly PH, Lawson RS, Shields RA, Testa HJ (1979) Idiopathic hydronephrosis-the diuresis renogram: a new noninvasive method of assessing equivocal pelvioureteral junction obstruction. J Urol 121:153–155

    PubMed  CAS  Google Scholar 

  25. Jones RA, Perez-Brayfield MR, Kirsch AJ, Grattan-Smith JD (2004) Renal transit time with MR urography in children. Radiology 233:41–50

    Article  PubMed  Google Scholar 

  26. Jones RA, Easley K, Little SB, Scherz H, Kirsch AJ, Grattan-Smith JD (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: Part 1, Functional assessment. AJR Am J Roentgenol 185:1598–1607

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Boss.

Additional information

Andreas Boss and Juergen F. Schaefer contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boss, A., Schaefer, J.F., Martirosian, P. et al. Contrast-enhanced dynamic MR nephrography using the TurboFLASH navigator-gating technique in children. Eur Radiol 16, 1509–1518 (2006). https://doi.org/10.1007/s00330-006-0182-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0182-9

Keywords

Navigation