Skip to main content

Advertisement

Log in

Extensive microphytobenthos mats of invasive Vaucheria aff. compacta and abiotic environmental factors influencing its abundance in Adventfjorden tidal flat, Svalbard

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Arctic coastline ecosystems are affected by current sea level rise together with increasing anthropogenic and environmental physical and biogeochemical pressures. Changes in nutrient concentrations followed by changes in primary productivity and biodiversity are also connected with the growth of global trade, urbanization, and travel activity. All these anthropogenic activities create biotic homogenization. The occurrence of massive extensive mats of the yellow-green alga Vaucheria aff. compacta is a unique phenomenon in the High Arctic tidal flat ecosystem. The objective of this study was to outline which physicochemical conditions are connected with the massive presence of V. aff. compacta mats across the Adventfjorden tidal flat. The Adventfjorden tidal flat is a very dynamic system. Fine silt sediment (68% to 80%) dominates across the studied tidal flat. The sediment cover of V. aff. compacta mats was always very thin and felt-like coatings can grow out. Beneath the V. aff. compacta mats a second distinct layer of dead filaments were observed in the black and anoxic mud layer. V. aff. compacta area cover was positively correlated with water salinity, pH, temperature, and sediment Na and organic carbon content. In addition, potential abiotic factors related with the local distribution and abundance of V. aff. compacta showed positive correlations between area cover and N-nitrate and P-phosphate. N-nitrate concentration appears to significantly promote V. aff. compacta abundance. V. aff. compacta distribution and abundance in the Adventfjorden tidal flat is influenced by a wide spectrum of environmental and structural variables including anthropogenically induced micronutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ACIA (2005) Impacts of warming climate: arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Acreman M, Fisher J, Stratford C, Mould D, Mountford J (2007) Hydrological science and wetland restoration: some case studies from Europe. Hydrol Earth Syst Sc 11:158–169

    Article  CAS  Google Scholar 

  • Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35:L19603. https://doi.org/10.1029/2008GL035028

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D (2005) Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Mar Ecol Prog Ser 303:167–175. https://doi.org/10.3354/meps303167

    Article  Google Scholar 

  • Blackall TD, Wilson LJ, Theobald MR, Milford C, Nemitz E, Bull J, Bacon PJ, Hamer KC, Wanless S, Sutton MA (2007) Ammonia emissions from seabird colonies. Geophys Res Lett 34:L10801. https://doi.org/10.1029/2006GL028928

    Article  CAS  Google Scholar 

  • Bosman A, Hockey P (1986) Seabird guano as a determinant of rocky intertidal community structure. Mar Ecol Prog Ser 32:247–257

    Article  Google Scholar 

  • Breuer F, Janz P, Farrelly E, Ebke K-P (2017) Environmental and structural factors influencing algal communities in small streams and ditches in central Germany. J Freswater Ecol 32:65–83. https://doi.org/10.1080/02705060.2016.1241954

    Article  Google Scholar 

  • Carmack EC, Yamamoto-Kawai M, Haine TW, Bacon S, Bluhm BA, Lique C, Melling H, Polyakov IV, Straneo F, Timmermans ML (2016) Freshwater and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J Geophys Res Biogeosciences 121:675–717. https://doi.org/10.1002/2015JG003140

    Article  CAS  Google Scholar 

  • Cartaxana P, Cruz S, Gameiro C, Kühl M (2016) Regulation of intertidal microphytobenthos photosynthesis over a diel emersion period is strongly affected by diatom migration patterns. Front Microbiol 7:872. https://doi.org/10.3389/fmicb.2016.00872

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalifour L, Scott DC, MacDuffee M, Lacarella JC, Martin TG, Baum JK (2019) Habitat use by juvenile salmon, other migratory fish, and resident fish species underscores the importance of estuarine habitat mosaics. Mar Ecol Prog Ser 625:145–162. https://doi.org/10.3354/meps13064

    Article  Google Scholar 

  • Chapman A, Lindley J (1980) Seasonal growth of Laminaria solidungula in the Canadian high Arctic in relation to irradiance and dissolved nutrient concentrations. Mar Biol 57:1–5

    Article  CAS  Google Scholar 

  • Cheverie AV, Hamilton DJ, Coffin MRS, Barbeau MA (2014) Effects of shorebird predation and snail abundance on an intertidal mudflat community. J Sea Res 92:102–114

    Article  Google Scholar 

  • Claeson SM, Coffin B (2016) Physical and biological responses to an alternative removal strategy of a moderate-sized dam in Washington, USA. River Res Appl 32:1143–1152

    Article  Google Scholar 

  • Cottier F, Skogseth R, David D, Berge J (2019) Temperature time-series in Svalbard fjords. A contribution from the integrated marine observatory partnership (iMOP). In: Orr et al. (eds): SESS report 2018, Svalbard Integrated Arctic Earth Observing System, Longyearbyen, pp 108–118 . https://sios-svalbard.org/SESS_Issue1

  • Daborn G, Amos C, Brylinsky M, Christian H, Drapeau G, Faas R, Grant J, Long B, Paterson D, Perillo G (1993) An ecological cascade effect: migratory birds affect stability of intertidal sediments. Limnol Oceanogr 38:225–231

    Article  CAS  Google Scholar 

  • Descamps S, Aars J, Fuglei E, Kovacz KM, Lydersen Ch, Pavlova O, Pedersen ÅØ, Ravolainen V, Strøm H (2017) Climate change impacts on wildlife in a high Arctic archipelago—Svalbard, Norwey. Glob Change Biol 23:490–502. https://doi.org/10.1111/gcb.13381

    Article  Google Scholar 

  • Dittmar T, Kattner G (2003) The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar Chem 83:103–120. https://doi.org/10.1016/S0304-4203(03)00105-1

    Article  CAS  Google Scholar 

  • Dunton KH, Schonberg SV, Cooper LW (2012) Food web structure of the Alaskan nearshore shelf and estuarine lagoons of the Beaufort Sea. Estuar Coast 35(2):416–435. https://doi.org/10.1007/s12237-012-9475-1

    Article  CAS  Google Scholar 

  • Elster J, Souquieres C-E, Jadrná I, Škaloud P, Søreide JE, Kvíderová J (2023) Invasive Vaucheria aff. compacta (Xanthophyceae) and its distribution over a high Arctic tidal flat in Svalbard. Estuar Coast Shelf Sci 281:108206. https://doi.org/10.1016/j.ecss.2022.108206

    Article  Google Scholar 

  • Facca C, Sfriso A, Socal G (2002) Changes in abundance and composition of phytoplankton and microphytobenthos due to increased sediment fluxes in the Venice Lagoon, Italy. Estuar Coast Shelf Sci 54:773–792. https://doi.org/10.1006/ecss.2001.0848

    Article  CAS  Google Scholar 

  • Gerwing TG, Drolet D, Barbeau MA, Hamilton DJ, Allen Gerwing AM (2015) Resilience of an intertidal infaunal community to winter stressors. J Sea Res 97:40–49

    Article  Google Scholar 

  • Hop H, Wiencke C (2019) The Ecosystem of Kongsfjorden, Svalbard. In: Hop H, Wiencke C (eds) Advances in polar ecology part 2. Springer, Cham

    Google Scholar 

  • Husson F, Josse J, Le S, Mazet J, Husson MF (2016) Package ‘factominer.’ An R Package 96:698

    Google Scholar 

  • Instruments Lachat (2004) Methods list for automated ion analyzers. Lachat Instruments, Loveland

    Google Scholar 

  • Josse J, Husson F (2016) missMDA: a package for handling missing values in multivariate data analysis. J Stat Softw 70:1–31. https://doi.org/10.18637/jss.v070.i01

    Article  Google Scholar 

  • Kalinowska A, Szopińska M, Chmiel S, Kończak M, Polkowska Ż, Artichowicz W, Jankowska K, Nowak A, Łuczkiewicz A (2020) Heavy metals in a High Arctic fiord and their introduction with the wastewater: a case study of Adventfjorden-Longyearbyen system. Svalbard Water 12:794. https://doi.org/10.3390/w12030794

    Article  CAS  Google Scholar 

  • Kartverket (2016) Tidevannstabeller for den Norske kyst med Svalbard samt Dover, England. 2017. 80. årgang. [Tidal tables for the Norwegian coast with Svalbard and Dover, England. 2017. 80th year]. Kartverket sjødivisjonen, Stavanger.

  • Kassambara A, Mundt F (2017) Package ‘factoextra’. Extract and visualize the results of multivariate data analyses 76:2

  • Kattsov VM, Källén E, Cattle HP, Christensen J, Drange H, Hanssen-Bauer I, Jóhannesen T, Karol I, Räisänen J, Svensson G (2005) Future climate change: modeling and scenarios for the Arctic. In: ACIA (eds) Arctic Climate Impact Assessment., Cambridge University Press, New York, pp 99–150

  • Kent AD, Yannarell AC, Rusak JA, Triplett EW, McMahon KD (2007) Synchrony in aquatic microbial community dynamics. ISME J 1:38–47. https://doi.org/10.1038/ismej.2007.6

    Article  CAS  PubMed  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol 19:1884–1896

    Article  Google Scholar 

  • Kvíderová J, Souquieres C-E, Elster J (2019) Ecophysiology of photosynthesis of Vaucheria sp. mats in a Svalbard tidal flat. Polar Sci 21:172–185. https://doi.org/10.1016/j.polar.2018.11.006

    Article  Google Scholar 

  • Leu E, Mundy CJ, Assmy P, Campbell K, Gabrielsen TM, Gosselin M, Juul-Pedersen T, Gradinger R (2015) Arctic spring awakening–steering principles behind the phenology of vernal ice algal blooms. Prog Oceanogr 139:151–170. https://doi.org/10.1016/j.pocean.2015.07.012

    Article  Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271. https://doi.org/10.1093/plankt/17.6.1245

    Article  Google Scholar 

  • MacDonald EC, Ginn MG, Hamilton DJ (2012) Variability in foraging behavior and implications for diet breadth among semipalmated sandpipers staging in the upper Bay of Fundy. Condor 114:135–144

    Article  Google Scholar 

  • Mantua N, Tohver I, Hamlet A (2010) Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Clim Change 102:187–223

    Article  Google Scholar 

  • McGovern M, Pavlov AK, Deininger A, Granskog MA, Leu E, Søreide JE, Poste AE (2020) Terrestrial inputs drive seasonality in organic matter and nutrient biogeochemistry in a High Arctic fjord system (Isfjorden, Svalbard). Front Mar Sci 7:542563. https://doi.org/10.3389/fmars.2020.542563

    Article  Google Scholar 

  • Murray NJ, Ma Z, Fuller RA (2015) Tidal flats of the Yellow Sea: a review of ecosystem status and anthropogenic threats. Austral Ecol 40:472–481. https://doi.org/10.1111/aec.12211

    Article  Google Scholar 

  • Nilsen F, Cottier F, Skogseth R, Mattsson S (2008) Fjord–shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont Shelf Res 28:1838–1853. https://doi.org/10.11646/phytotaxa.186.3.1

    Article  Google Scholar 

  • Norwegian Polar Institute (2014) Kartdata Svalbard 1:100 000 (S100 Kartdata)/Map Data . Norwegian Polar Institute. https://doi.org/10.21334/npolar.2014.645336c7.

  • Nowak A, Hodgkins R, Nikulina A, Osuch M, Wawrzyniak T, Kavan J, Łepkowska E, Majerska M, Romashova K, Vasilevich I, Sobota I, Rachlewicz, G (2021) From land to fjords: The review of Svalbard hydrology from 1970 to 2019. In: Moreno-Ibáñez et al. (eds) SESS report 2020, Svalbard Integrated Arctic Earth Observing System, Longyearbyen, pp 176–201, https://doi.org/10.5281/zenodo.4294063.

  • Oksanen J, Minchin PR (2002) Continuum theory revisited: what shape are species responses along ecological gradients? Ecol Model 157:119–129

    Article  Google Scholar 

  • Paterson DM, Aspden RJ, Black KS (2009) Intertidal flats: ecosystem functioning of soft sediment systems. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, The Netherlands, pp 317–338

    Google Scholar 

  • Pilditch CA, Leduc D, Nodder SD, Probert PK, Bowden DA (2015) Spatial patterns and environmental drivers of benthic infaunal community structure and ecosystem function on the New Zealand continental margin. New Zeal J Mar Fresh 49(2):224–246

    Article  CAS  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer-Verlag, New York

    Book  Google Scholar 

  • Queirós AM, Stephens N, Cook R, Ravaglioli C, Nunes J, Dashfield S, Harris C, Tilstone GH, Fishwick J, Braeckman U (2015) Can benthic community structure be used to predict the process of bioturbation in real ecosystems? Prog Oceanogr 137:559–569

    Article  Google Scholar 

  • re3data.org Norwegian Meteorological Institute, Free Meteorological Data; editing status 2021–07–12; re3data.org—Registry of Research Data Repositories, https://doi.org/10.17616/R3GS5Z Accessed 11 02 2022

  • Rijkenberg MJ, Slagter HA, Rutgers van der Loeff M, Van Ooijen J, Gerringa LJ (2018) Dissolved Fe in the deep and upper Arctic Ocean with a focus on Fe limitation in the Nansen Basin. Front Mar Sci 5:88. https://doi.org/10.3389/fmars.2018.00088

    Article  Google Scholar 

  • RStudio Team (2016) RStudio: Integrated Development for R. RStudio Inc, Boston

    Google Scholar 

  • Rudels B (2015) Arctic Ocean circulation, processes and water masses: a description of observations and ideas with focus on the period prior to the International Polar Year 2007–2009. Prog Oceanogr 132:22–67. https://doi.org/10.1016/j.pocean.2013.11.006

    Article  Google Scholar 

  • Rudels B, Larsson AM, Sehlstedt PI (1991) Stratification and water mass formation in the Arctic Ocean: some implications for the nutrient distribution. Polar Res 10:19–32. https://doi.org/10.1111/j.1751-8369.1991.tb00631.x

    Article  Google Scholar 

  • Rybalka N, Epkes S, Wegner KM, Michaelis R, Reise K (2022) Invasive Vaucheria (Xanthophyceae) at the lower shore of the Wadden Sea. Phycologia 61(3):274–283. https://doi.org/10.1080/00318884.2022.2035532

    Article  Google Scholar 

  • Schagerl M, Kerschbaumer M (2009) Autecology and morphology of selected Vaucheria species (Xanthophyceae). Aquat Ecol 43:295–303. https://doi.org/10.1007/s10452-007-9163-6

    Article  CAS  Google Scholar 

  • Scholz B, Liebezeit G (2012) Microphytobenthic dynamics in a Wadden Sea intertidal flat–Part I: seasonal and spatial variation of diatom communities in relation to macronutrient supply. Eur J Phycol 47:105–119

    Article  CAS  Google Scholar 

  • Schutte CA, Ahmerkamp S, Wu CS, Seidel M, de Beer D, Cook PLM, Joye SB (2019) Biogeochemical dynamics of coastal tidal flats. In: Perillo GME, Wolanski E, Cahoon DR, Hopkinson CS (eds) Coastal Wetlands. Elsevier, Amsterdam, Oxford, Cambridge, pp 407–440

    Chapter  Google Scholar 

  • Sejr MK, Blicher ME, Rysgaard S (2009) Sea ice cover affects inter-annual and geographic variation in growth of the Arctic cockle Clinocardium ciliatum (Bivalvia) in Greenland. Mar Ecol Prog Ser 389:149–158. https://doi.org/10.3354/meps08200

    Article  Google Scholar 

  • Shim KC, Koprivnikar J, Forbes MR (2013) Variable effects of increased temperature on a trematode parasite and its intertidal hosts. J Exp Mar Biol Ecol 439:61–68

    Article  Google Scholar 

  • Simons J (1975) Vaucheria species form estuarine areas in the Netherlands. Neth J Sea Res 9:1–23. https://doi.org/10.1016/0077-7579(75)90020-4

    Article  CAS  Google Scholar 

  • Søreide JE, Pitusi V, Vader A, Damsgård B, Nilsen F, Skogseth R, Poste A, Bailey A, M. KK, Lydersen C, Gerland S, Descamps S, Strøm H, Renaud PE, Christensen G, Arvnes MP, Graczyk P, Moiseev D, Singh RK, Bélanger S, Elster J, Urbański J, Moskalik M, Wiktor J, Węsławski JM (2020) Environmental status of Svalbard coastal waters: coastscapes and focal ecosystem components,. In: Moreno-Ibáñez M, Hagen JOM, Hübner C, Lihavainen H,

  • Stevenson RJ (1997) Scale-dependent determinants and consequences of benthic algal heterogeneity. J North Am Bemthol Soc 16:248–262

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor MM, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2014) Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York.

  • Stutz ML, Pilkey OH (2002) Global distribution and morphology of deltaic barrier island systems. J Coast Res 36(10036):694–707. https://doi.org/10.2112/1551-5036-36.sp1.694

    Article  Google Scholar 

  • Tremblay JÉ, Bélanger S, Barber D, Asplin M, Martin J, Darnis G, Fortier L, Gratton Y, Link H, Archambault P (2011) Climate forcing multiplies biological productivity in the coastal Arctic Ocean. Geophys Res Lett 38:L18604. https://doi.org/10.1029/2011GL048825

    Article  CAS  Google Scholar 

  • Trudel M, Fisher J, Orsi JA, Morris JFT, Thiess ME, Sweeting RM, Hinton S, Fergusson EA, Welch DW (2009) Distribution and migration of juvenile Chinook salmon derived from coded wire tag recoveries along the continental shelf of western North America. T Am Fish Soc 138:1369–1391

    Article  Google Scholar 

  • Vancoppenolle M, Bopp L, Madec G, Dunne J, Ilyina T, Halloran PR, Steiner N (2013) Future Arctic Ocean primary productivity from CMIP5 simulations: uncertain outcome, but consistent mechanisms. Glob Biochem Cycles 27:605–619. https://doi.org/10.1002/gbc.20055

    Article  CAS  Google Scholar 

  • von Biela VR, Newsome SD, Bodkin JL, Kruse GH, Zimmerman CE (2016) Widespread kelp-derived carbon in pelagic and benthic nearshore fishes suggested by stable isotope analysis. Estuar Coast Shelf Sci 181:364–374. https://doi.org/10.1016/j.ecss.2016.08.039

    Article  CAS  Google Scholar 

  • Weslawski JM, Szymelfenig M, Zajaczkowski M, Keck A (1999) Influence of salinity and suspended matter on benthos of an Arctic tidal flat. ICES J Mar Sci 56:194–202. https://doi.org/10.1006/jmsc.1999.0620

    Article  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, Cham

    Book  Google Scholar 

  • Wiencke C, Gómez I, Dunton K (2009) Phenology and seasonal physiological performance of polar seaweeds. Bot Mar 52:585–592. https://doi.org/10.1515/BOT.2009.078

    Article  CAS  Google Scholar 

  • Wiktor J, Tatarek A, Węsławski JM, Kotwicki L, Poulin M (2016) Colonies of Gyrosigma eximium: a new phenomenon in Arctic tidal flats. Oceanologia 58:336–340. https://doi.org/10.1016/j.oceano.2016.04.007

    Article  Google Scholar 

  • Ysebaert T, Meire P, Coosen J, Essink K (1998) Zonation of intertidal macrobenthos in the estuaries of Schelde and Ems. Aquat Ecol 32:53–71

    Article  Google Scholar 

  • Zacher K, Rautenberger R, Hanelt D, Wulff A, Wiencke C (2009) The abiotic environment of polar marine benthic algae. Bot Mar 52:483–490. https://doi.org/10.1515/BOT.2009.082

    Article  Google Scholar 

  • Zajaczkowski M, Szczucinski W, Bojanowski R (2004) Recent changes in sediment accumulation rates in Adventfjorden, Svalbard. Oceanologia 46:217–231

    Google Scholar 

  • Zajączkowski M, Włodarska-Kowalczuk M (2007) Dynamic sedimentary environments of an Arctic glacier-fed river estuary (Adventfjorden, Svalbard). I. Flux, deposition, and sediment dynamics. Estuar Coast Shelf Sci 74:285–296. https://doi.org/10.1016/j.ecss.2007.04.015

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sport of the Czech Republic [projects LTAIN 19139, EF16_013/0001782 – SoWa Ecosystems Research]; by the Czech Science Foundation [project 22-08680L], and by the Czech Academy of Sciences [long-term research development project No. RVO 67985939]. We thank the personnel of the Czech Arctic Research Infrastructure in Svalbard for logistic support, personnel of the Chemical laboratory of the Institute of Hydrobiology BC CAS in České Budějovice and the Analytical Laboratory of the Institute of Botany CAS in Třeboň and Průhonice, Jana Šnohousová for laboratory support and Dr. Keith Edwards for reviewing our manuscript and language corrections.

Funding

Ministerstvo Školství,Mládeže a Tělovýchovy, LTAIN 19139, Grantová Agentura České Republiky, 22-08680L, Institute of Botany of the Czech Academy of Sciences, RVO 67985939

Author information

Authors and Affiliations

Authors

Contributions

C-ES, JK and JE conceived and designed research, conducted field work and experiments/measurements and processed data. C-ES and JK performed statistical analyses and prepared all figures. C-ES, JK and JE wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Josef Elster.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Supplementary file2 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souquieres, CE., Kvíderová, J. & Elster, J. Extensive microphytobenthos mats of invasive Vaucheria aff. compacta and abiotic environmental factors influencing its abundance in Adventfjorden tidal flat, Svalbard. Polar Biol 46, 1307–1320 (2023). https://doi.org/10.1007/s00300-023-03203-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-023-03203-y

Keywords

Navigation