Skip to main content
Log in

Historical review and contribution to the knowledge of Amythas membranifera (Ampharetidae): an integrative perspective of an Antarctic polychaete

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Amythas membranifera was originally described through a single and incomplete specimen found in Commonwealth Bay, Adélie Land, Antarctica, at ~ 600 m depth. The species occurs exclusively in Antarctic waters and has a great ecological and biological value to benthic dynamics in some Antarctic areas. We collected several specimens of A. membranifera at Marian Cove, Maxwell Bay (King George Island) during a cruise of the project “CHAnges in Coastal Marine Systems of the Antarctic Peninsula: a 2050 Outlook (CHAMP2050)”. We present here a detailed study of A. membranifera from new specimens collected during this cruise, including morphological redescription, morphometry, molecular biology studies and aspects of their distribution, reproduction and feeding. A. membranifera specimens present an intraovarian oogenesis with blood vessel association for yolk precursor transference, with mature oocytes with 180–260 µm in diameter. Our data may suggest a broadcast spawner strategy. The spermiogenesis follows with the maturation of spermatids in spermatozoids in smaller clusters of cells and stored freely in the coelom prior to spawn ect-aquasperms. Finally, we point that one of the most intriguing aspects to date is its distribution, since most recent records were made in the West Antarctic Peninsula region while few records were made in the region of the original description (East Antarctic). This is our contribution to the knowledge of this species encompassing different scientific topics in a integrative perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Kim et al. (2021)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data used in this study are included within this paper and they can be available upon request.

References

  • Allcock AL, Barratt I, Eléaume M, Linse K, Norman MD, Smith PJ, Steinke D, Stevens DW, Strugnell JM (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep Sea Res Part II 58:1–2. https://doi.org/10.1016/j.dsr2.2010.05.016

    Article  Google Scholar 

  • Benham WB (1921) Polychaeta. Australasian Antarctic Expedition 1911–1914 under the Leadership of Sir Douglas Mawson. Scientific Reports of the Australasian Antarctic Expedition 1911–1914. Series c, Zoology and Botany 3:185–201

    Google Scholar 

  • Blake EA, Van Dover CL (2005) The reproductive biology of Amythas lutzi, an ampharetid polychaete from hydrothermal vents on the Mid-Atlantic Ridge. Invertebr Biol 124(3):254–264

    Article  Google Scholar 

  • Brasier MJ, Wiklund H, Neal L, Jeffreys R, Linse K, Ruhl H, Glover AG (2016) DNA barcoding uncovers cryptic diversity in 50% of deep-sea Antarctic polychaetes. Royal Soc Open Sci 3(11):160432. https://doi.org/10.1098/rsos.160937

    Article  CAS  Google Scholar 

  • Carr CM, Hardy SM, Brown TM, Macdonald TA, Hebert PD (2011) A tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes. PLoS one, 6(7):e22232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke A (1979) On living in cold water: K-strategies in Antarctic benthos. Mar Biol 55(2):111–119

    Article  Google Scholar 

  • Costa-Paiva EM, Paiva P (2007) Um estudo morfométrico de espécies de Eunice Cuvier (Annelida, Polychaeta). Rev Bras Zool 24(2):353–358

    Article  Google Scholar 

  • Eckelbarger KJ (1983) Evolutionary radiation in polychaete ovaries and vitellogenic mechanisms: their possible role in life history patterns. Can J Zool 61(3):487–504. https://doi.org/10.1139/z83-065

    Article  Google Scholar 

  • Eckelbarger KJ (2006) Oogenesis. In: Rouse GW, Pleijel F (eds) Reproductive biology and phylogeny of Annelida. Science Publishers, New York, pp 23–43

    Google Scholar 

  • Eilertsen MH, Kongsrud JA, Alvestad T, Stiller J, Rouse GW, Hans TR (2017) Do ampharetids take sedimented steps between vents and seeps? Phylogeny and habitat-use of Ampharetidae (Annelida, Terebelliformia) in chemosynthesis-based ecosystems. BMC Evol Biol 17:222. https://doi.org/10.1186/s12862-017-1065-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299

    CAS  PubMed  Google Scholar 

  • Gambi MC, Castelli A, Guizzardi M (1997) Polychaete populations of the shallow soft bottoms off Terra Nova Bay (Ross Sea, Antarctica): distribution, diversity and biomass. Polar Biol 17:199–210. https://doi.org/10.1007/s003000050123

    Article  Google Scholar 

  • Ghiselin MT (1987) Evolutionary aspects of marine invertebrate reproduction. Reprod Marine Invertebr 9:609–665

    Google Scholar 

  • Giese AC (1959) Comparative physiology: annual reproductive cycles of marine invertebrates. Annu Rev Physiol 21:547–576

    Article  CAS  PubMed  Google Scholar 

  • Giese AC, Pearse JS (1975) Reproduction of marine invertebrates: III. Annelids and Echiurans. Academic Press, New York, pp 1–343

    Google Scholar 

  • Grange LJ, Smith CR (2013) Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity. PlosOne 8(12):e77917. https://doi.org/10.1371/journal.pone.0077917

    Article  CAS  Google Scholar 

  • Griffiths HJ, Van de Putte AP, Danis B (2014) Data distribution: patterns and implications. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz CD (eds) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 16–26

    Google Scholar 

  • Guillaumot C, Danis B, Saucède T (2021) Species distribution modelling of the Southern Ocean benthos: a review on methods, cautions and solutions. Antarct Sci 33(4):349–372. https://doi.org/10.1017/S0954102021000183

    Article  Google Scholar 

  • Hartman O (1966) Polychaeta Myzostomidae and Sedentaria of Antarctica. Antarct Res Ser 7:1–158

    Google Scholar 

  • Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AH, Geiskes WW et al (eds) Antarctic biology in a global context. Backhuys Publishers, Leiden, pp 135–139

    Google Scholar 

  • Held C, Wägele JC (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaeteliidae). Sci Mar 69(2):175–181

    Article  Google Scholar 

  • Hilbig B (2004) Polychaetes of the deep Weddell and Scotia Seas - composition and zoogeographical links. Deep-Sea Res II 51:1817–1825. https://doi.org/10.1016/j.dsr2.2004.07.015

    Article  Google Scholar 

  • Hutchings PA (1973) Gametogenesis in a Northumberland population of the polychaete Melinna cristata. Mar Biol 18(3):199–211

    Article  Google Scholar 

  • Jumars PA, Dorgan KM, Lindsay SM (2015) Diet of worms emended: an update of polychaete feeding guilds. Ann Rev Mar Sci 7:497–520. https://doi.org/10.1146/annurev-marine-010814-020007

    Article  PubMed  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrocks S, Buxton S, Cooper A, Markowitz A, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim BK, Jeon M, Joo HM, Kim T, Park S, Park J, Ha S (2021) Impact of freshwater discharge on the carbon uptake rate of phytoplankton during summer (January–February 2019) in Marian Cove, King George Island. Antarctica Front Mar Sci 8:2021. https://doi.org/10.3389/fmars.2021.725173

    Article  Google Scholar 

  • Knox GA, Cameron DB (1998) The marine fauna of the Ross Sea: Polychaeta. National Institute of Water and Atmospheric Research (NIWA), NIWA Biodiversity Memoir 108 (formerly New Zealand Oceanographic Institute Memoirs)

  • Kongsrud JA, Eilertsen MH, Alvestad T, Kongshavn K, Rapp HT (2017) New species of Ampharetidae (Annelida: Polychaeta) from the Arctic loki castle vent field. Deep Sea Res Part II: Top Stud Oceanogr 137:232–245

    Article  CAS  Google Scholar 

  • Krabbe K, Leese F, Mayer C, Tollrian R, Held C (2009) Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biol 33:281–292. https://doi.org/10.1007/s00300-009-0703-5

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linse K, Cope T, Lörz A-N, Sands C (2007) Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol 30:1059–1068. https://doi.org/10.1007/s00300-007-0265-3

    Article  Google Scholar 

  • McHugh D, Tunnicliffe V (1994) Ecology and reproductive biology of the hydrothermal vent polychaete Amphisamytha galapagensis (Ampharetidae). Mar Ecol Prog Ser 106:111–120. https://doi.org/10.3354/meps106111

    Article  Google Scholar 

  • McIntosh WC (1922) Antarctic Polychaeta. Nature 109:604–605

    Google Scholar 

  • Monro CCA (1939) Polychaeta. Antarctic research expedition, 1929–31. Adelaide, Australia. Rept Ser B (zool and Bot) 4(4):89–156

    Google Scholar 

  • Olive PJ (1983) Annelida – polychaeta. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates spermatogenesis and sperm function, 2nd edn. Wiley, Chichester, pp 321–342

    Google Scholar 

  • Pabis K, Sobczyk R (2015) Small-scale spatial variation of soft-bottom polychaete biomass in an Antarctic glacial fjord (Ezcurra Inlet, South Shetlands): comparison of sites at different levels of disturbance. Helgol Mar Res 69:113–121

    Article  Google Scholar 

  • Palumbi SR (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates Inc, Sunderland, pp 205–247

    Google Scholar 

  • Pamungkas J, Glasby CJ, Costello MJ (2021) Biogeography of polychaete worms (Annelida) of the world. Mar Ecol Prog Ser 657:147–159. https://doi.org/10.3354/meps13531

    Article  Google Scholar 

  • Parapar J, López E, Gambi MC, Núñez J, Ramos A (2011) Quantitative analysis of soft-bottom polychaetes of the Bellingshausen Sea and Gerlache Strait (Antarctica). Polar Biol 34:715–730. https://doi.org/10.1007/s00300-010-0927-4

    Article  Google Scholar 

  • Pearse JS (1994) Cold-water echinoderms break ‘Thorson’s Rule.’ In: Young CM, Eckelbarger KJ (eds) Reproduction, larval biology and recruitment of deep-sea benthos. Columbia University Press, New York, pp 26–43

    Google Scholar 

  • Queirós JP, Ravara A, Eilertsen MH, Kongsrud JA, Hilário A (2017) Paramytha ossicola sp. nov. (Polychaeta, Ampharetidae) from mammal bones: reproductive biology and population structure. Deep Sea Res Part II 137:349–358. https://doi.org/10.1016/j.dsr2.2016.08.017

    Article  CAS  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouse GW (1999) Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa. Biol J Lin Soc 66(4):411–464

    Article  Google Scholar 

  • Rouse GW (2000) Bias? What bias? The evolution of downstream larval-feeding in animals. Zoolog Scr 29(3):213–236

    Article  Google Scholar 

  • Rouse GM (2006) Annelid sperm and spermiogenesis. In: Rouse GW, Pleijel F (eds) Reproductive biology and phylogeny of Annelida, vol 4. Science Publishers, New Hampshire, pp 45–77

    Google Scholar 

  • Rouse GW, Jamieson BM (1987) An ultrastructural study of the spermatozoa of the polychaetes Eurythoe complanata (Amphinomidae), Clymenella sp. and Micromaldane sp. (Maldanidae), with definition of sperm types in relation to reproductive biology. J Submicrosc Cytol 19(4):573–584

    Google Scholar 

  • Rousset V, Pleijel F, Rouse GW, Erséus C, Siddall ME (2007) A molecular phylogeny of annelids. Cladistics 23(1):41–63

    Article  PubMed  Google Scholar 

  • Schiaparelli S, Jirkov IA (2021) Contribution to the taxonomic knowledge of Ampharetidae (Annelida) from Antarctica with the description of Amage giacomobovei sp. nov. Eur J Taxon 733:125–145. https://doi.org/10.5852/ejt.2021.733.1227

    Article  Google Scholar 

  • Schüller M, Ebbe B (2007) Global distributional patterns of selected deep-sea Polychaeta (Annelida) from the Southern Ocean. Deep-Sea Research II, 54:1737–1751. https://doi.org/10.1016/j.dsr2.2007.07.005

    Article  Google Scholar 

  • Schüller M, Jirkov IA (2013) New Ampharetidae (Polychaeta) from the deep Southern Ocean and shallow Patagonian waters. Zootaxa 3692(1):204–237. https://doi.org/10.11646/zootaxa.3692.1.11

    Article  Google Scholar 

  • Sicinski J, Jazdzewski K, De Broyer C, Presler P, Ligowski R, Nonato EF, Corbisier TN, Petti MAV, Brito TAS, Lavrado HP, Blazewicz-Paszkowycz M, Pabis K, Jazdzewska A, Campos LS (2011) Admiralty Bay Benthos Diversity - a census of a complex polar ecosystem. Deep-Sea Res Part II 58:30–48

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiller J, Rousset V, Pleijel F, Chevaldonné P, Vrijenhoek RC, Rouse GW (2013) Phylogeny, biogeography and systematics of hydrothermal vent and methane seep Amphisamytha (Ampharetidae, Annelida), with descriptions of three new species. Syst Biodivers 11(1):35–65. https://doi.org/10.1080/14772000.2013.772925

    Article  Google Scholar 

  • Stiller J, Tilic E, Rousset V, Pleijel F, Rouse GW (2020) Spaghetti to a tree: a robust phylogeny for terebelliformia (Annelida) based on transcriptomes. Mol Morphol Data Biol 9(4):73. https://doi.org/10.3390/biology9040073

    Article  CAS  Google Scholar 

  • Sumida PYG, Smith CR, Bernardino AF, Polito PS, Vieira DR (2014) Seasonal dynamics of megafauna on the deep West Antarctic Peninsula shelf in response to variable phytodetrital flux. Royal Soc Open Sci 1:140294. https://doi.org/10.1098/rsos.140294

    Article  CAS  Google Scholar 

  • Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25(1):1–45

    Article  CAS  PubMed  Google Scholar 

  • Vacchi M, La Mesa M, Castelli A (1994) Diet of two coastal nototheniid fish from Terra Nova Bay. Ross Sea Antarct Sci 6(1):61–65. https://doi.org/10.1017/S0954102094000088

    Article  Google Scholar 

  • Wilson WH (1991) Sexual reproductive modes in polychaetes: classification and diversity. Bull Mar Sci 48(2):500–516

    Google Scholar 

  • Wilson NG, Hunter RL, Lockhart SJ, Halanych KM (2007) Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904. https://doi.org/10.1007/s00227-007-0742-9

    Article  Google Scholar 

  • Ziegler AF, Cape M, Lundesgaard Ø (2020) Smith CR (2020) Intense deposition and rapid processing of seafloor phytodetritus in a glaciomarine fjord, Andvord Bay (Antarctica). Progress Oceanogr 187:102413. https://doi.org/10.1016/j.pocean.2020.102413

    Article  Google Scholar 

  • Zottoli RA (1983) Amphisamytha galapagensis, a new species of ampharetid polychaete from the vicinity of abyssal hydrothermal vents in the Galapagos Rift, and the role of this species in rift ecosystems. Proc Biol Soc Wash 96(3):379–391

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr Angelika Brandt, Dr Alexandra Kerbl, Dr Mariam Duncker, Dr Maria Cristina Gambi, Dr Julio Parapar Vegas and Dr Eduardo Lopéz Garcia for their kind help to send details about Amythas membranifera sampling.

Funding

This work was conducted as part of a KOPRI project entitled “CHAnges in Coastal Marine Systems of the Antarctic Peninsula: a 2050 Outlook (CHAMP2050)” and supported by the Ministry of Oceans and Fisheries through Korea Polar Research Institute, Incheon, South Korea (Grant No PE18070, PE19070and PE22110). Laboratory analyses were conducted at the “Laboratório de Ecologia e Evolução de Mar Profundo” (LAMP/IOUSP) with support of the project “BEnthic COnnections Of high southern Latitudes (BECOOL)” (CNPq 442718/2018-7 and FAPESP 2019/12551-8).

Author information

Authors and Affiliations

Authors

Contributions

OC conceived the study, OC, MAVP, PYGS wrote the manuscript, and MAVP, DUK, SB, IYA conducted feld, and OC, GB, SB the lab work. All authors effectively contributed to the interpretation of the findings and revision and editing of the final draft of the article.

Corresponding author

Correspondence to Orlemir Carrerette.

Ethics declarations

Conflict of interest

All authors declare they have no conflicts or competing interest and that the study was conducted in accordance with the ethical standards of their national research committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 16 KB)

Supplementary file2 (DOCX 635 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrerette, O., Petti, M.A.V., Kim, DU. et al. Historical review and contribution to the knowledge of Amythas membranifera (Ampharetidae): an integrative perspective of an Antarctic polychaete. Polar Biol 46, 1287–1305 (2023). https://doi.org/10.1007/s00300-023-03202-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-023-03202-z

Keywords

Navigation